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Foreword 
by Stanley Zionts 

Advances in Multiple Criteria Decision Making - What does this mean? We all 
know that multiple criteria decision-making (MCDM) has to do with making 
decisions involving more than one criterion. Virtually all decisions involve more 
than one criterion. Advances are improvements. So the title of this volume has to do 
with improving decisions involving more than one criteria. This is an appropriate 
title for this volume. 

Multiple criteria decision making has been a rapidly growing field of management, 
engineering, and other areas. It has generated many articles, books, and conferences 
- a huge literature is associated with it. This volume includes contributions by many 
of the most well known people in the field. I first want to overview the volume, and 
then speculate on the directions the field should take. The authors of the articles in 
the volume are all very senior academics in their field -- the book should be required 
reading for anyone who plans to work in MCDM. 

The volume begins with an overview by Bernard Roy, one of the founding fathers of 
MCDM. His objective is to explore what decision aiding is and should be, from the 
perspective of a practitioner - someone who uses our methods to make decisions. 
Johannes Jahn continues with a contribution that develops the theory of vector 
maximization and explores concepts of efficient solutions. Hirotaka Nakayama 
explores the role of duality in multi-objective optimization. Carlos Bana e Costa and 
Jean-Claude Vans nick explore various aspects of preference relations, and actively 
consider the idea of incomparability. Oleg Larichev considers normative and 
descriptive aspects of decision making. His is another overview. Thomas Hanne 
studies meta decision problems in MCDM. Sensitivity Analysis in MCDM is 
considered by Tetsuzo Tanino. Sang Lee and David Olson present a paper on goal 
programming, that includes an overview as well as applications of goal 
programming. Andrzej Wierzbicki explores reference point approaches, an 
important tool of MCDM that helps transform the desires of a decision-maker into an 
attainable decision. Theodor Stewart explores the concepts of interactive 
programming, and categorizes methods that use tradeoffs in one form or another. He 
also reports on simulation studies that evaluate the convergence of such methods. 

Philippe Vincke presents an overview of outranking approaches, which are designed 
to generate partial orderings of alternatives for decision-makers. He considers 
roughly ten different methods. Valerie Belton limits her presentation to the certainty 
case, and the use of elicitation procedures to help people make decisions. Ami Arbel 
overviews the interior point methods of mathematical programming to help solve 
multiple criteria problems. Salvatore Greco, Benedetto Matarazzo, and Roman 
Slowinski explore the use of rough and fuzzy sets in multiple criteria decision 
making. The subject of artificial intelligence in MCDM is surveyed by Patrice and 
Jean-Charles Pomerol. Andrew Chipperfield, James Whidborne, and Peter Fleming 
explore evolutionary approaches and simulated annealing, and their applications to 
MCDM. 
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viii 

So there you have an overview of this impressive volume. The volume is a "must 
read" for anyone in the MCDM field, and will serve as a useful reference for 
students, faculty, and other researchers. 

So where is our field and where is it going? What is now needed is a synthesis of the 
many approaches into easy-to-use methods that are used. We are generating more 
and more applications of MCDM models. MCDM has made inroads into the 
education of engineers and managers. But more must be done. We must promote 
the use of our wares by managers, and respond to the needs of managers with 
methods that do what they want. I still strongly believe that what is needed is a 
spreadsheet type of method that will allow ordinary people to use MCDM methods 
for ordinary decisions. 

Enjoy the volume! Go forth and produce! 

Stanley Zionts 
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PREFACE 

From the time of our earliest human and pre-human ancestors many millions of years 
ago, decisions have had to be made and have involved multiple conflicting 
objectives. Do we commit our resources to hunting the high-risk high-return option 
of the mammoth, or do we rather hunt a few small antelope? At what point do we 
begin gathering food for winter, even when that means less for today? Evolution 
adapted our forbears to be able to take such decisions effectively by intuition. But as 
the world has become increasingly complex and rapid-changing, the wider the range 
of objectives to be optimized, and the more difficult the finding of "optimal" 
solutions has become. Even the word "optimal" must be placed in quotes, as the 
concept of optimality becomes increasingly ill-defined. 

At a practical level, mathematical programming under multiple objectives has 
emerged as a powerful tool to assist in the process of searching for decisions which 
best satisfy a multitude of conflicting objectives. In order to justify use of this tool, 
however, it needs to be supported by a rigorous theoretical foundation regarding the 
notion of "optimality" when there are several conflicting objectives, and the 
properties of the methods applied to the finding of the solution. On the other hand, 
the resulting (generally computer based) multicriteria decision support systems or 
aids, must effectively be usable by decision makers, enabling them to gain 
understanding of the choices available, and to express value judgements, without 
their having to be skilled in these underlying theoretical foundations. 

At this time, many distinct methodologies for multicriteria decision making problems 
exist, which can be categorized in a variety of ways, such as form of model (e.g. 
linear, non-linear, stochastic), characteristics of the decision space (e.g. finite or 
infinite), or solution process (e.g. prior specification of preferences or interactive). 
Scientists from a wide variety of disciplines (such as mathematics, economics and 
psychology) have contributed to the development of the field of Multicriteria 
Decision Making (MCDM) (or Multicriteria Decision Analysis (MCDA), 
Multiattribute Decision Making (MADM), Multiobjective Decision Making 
(MODM), etc.) over the past 30 years, helping to establish MCDM as an important 
part of management science, with its own specialist journals, special issues of 
journals, special interest groups and societies, and conferences. In this way, MCDM 
is becoming an obligatory component of studies in management science, economics 
and industrial engineering at many universities around the world. 

With this background, the current volume has been conceived, aImIng to bring 
together "state of the art" reviews and the most recent advances by leading experts on 
the fundamental theories, methodologies and applications of MCDM. This is aimed 
at graduate students and researchers in mathematics, economics, management and 
engineering, as well as at practicing management scientists who wish better to 
understand the principles of this new and fast developing field. 
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Stanley Zionts, in his Foreword, has already listed the chapters and authors in this 
volume. The editors have aimed at compiling a volume of long-lasting value, and 
wish to express their appreciation to the authors for their outstanding presentations 
and their cooperation in a project that has lasted about two years. The editors would 
also like to express their gratitude to Frederick S. Hillier for including this book in 
Kluwer's International Series in OR and MS, for which he is the editor. Last but not 
least the editors wish to thank Gary Folven, the editor at Kluwer Academic 
Publishers, and his staff, for coworking on this project. 
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Abstract: The object of this chapter is to present an overall view of what Decision-Aiding 
(DA) is today, or what it seeks to be. The standpoint adopted here is more that of the 
practitioner than that of the theoretician. Above all, we shall attempt to emphasize what 
a scientific approach might claim to contribute to illuminating decision-making and how 
this approach might facilitate the proper functioning of the decision-making process as a 
whole. It is possible, in one way, to consider that decision-aiding was the natural 
outgrowth of operational research. This discipline, as it was conceived of and impIemen-
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ted particularly during the 1960s, proved to have a relatively limited field of application. 
The current conception of DA aims to free itself from these limitations, as will be 
explained in the first two paragraphs of Section 1.1. This allows us to understand why DA 
is most often Multicriteria Decision Aiding (MCDA). In the final paragraph of this 
Section we shall highlight, on these bases, what it is reasonable to expect from DA in 
actual practice. Section 1.2 presents the conceptual architecture which constitutes the 
foundation of DA (and, more precisely, MCDA). A glossary (see Appendix) provides 
definitions for the principle terms used, and furnishes some additional methodological 
information. The final section is devoted to what the practitioner should expect from using 
computerized procedures and tools to develop recommendations and/or point the way 
towards a decision. In order to allow the reader to appreciate the scope and variety of 
existing applications, we have included in the bibliography a very limited selection of 
applications which in no way claims to be scientifically representative. This sample of 
related work points out the diverse number of both countries and sectors of activity which 
have shown an interest in the methods explored in this book. 

1.1 FROM OPERATIONAL RESEARCH TO DECISION-AIDING 

... And if optimization consists of integrating disorders, uncertainties, unknown 
factors, challenges and antagonisms, then such optimization comprises unoptimizable; 
from that moment on, should we not revise, reformulate and open up our notion of 
optimization? Should we not understand that true optimization is always complex, 
risky, composed of disorders and conflicts and that its enemy is pseudo-rationalism 
which claims to drive away conflict, disorder and risk? Any ideal conception of an 
organization which would be only order, harmony and coherence is the dream of a 
demented ideologue and/or technocrat (Morin, [46] translated from the original 
French text). 

In a way which some might deem a bit provocative, the above text underlines 
some of the limitations of any approach - presented as scientific - to questions 
relative to decision-aiding. Works undertaken over the past fifty years have 
profoundly changed our conception of what we can expect from such an approach 
and have, in particular, sensitized us to the necessity of getting out of two ruts, 
preconceptions inherited from the so-called hard sciences. It is only after clarifying 
this double necessity that we shall seek, in Subsections 1.1.1 and 1.1.2, to delimit 
what the user should be able to expect from decision-aiding today. 

1.1.1 Getting away from an overly descriptive vision 

Discovering or, failing that, getting close to the optimal decision through a scientific 
approach supported by models describing an objective reality, this was the ambition 
of Operational Research (OR) during the two decades immediately following World 
War II. Yet decision-making situations verifying the necessary conditions for this 
ambition to make sense proved to be far less frequent than pioneers of OR had 
believed them to be. There were a number of reasons for this, but primarily the two 
given below: 
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1°) It is rare for the decision to be the instantaneous act of a single readily 
identified, rational and omnipotent decision-maker. To the contrary, it is much more 
likely that arriving at a decision forms a part of an ongoing process, for which a 
given decision provides a stopping point I; often, this process is not very rational. 
It draws in multiple actors who play out their parts within a complex context, with 
more or less conflicting stakes. 

2°) It is very unusual for preference, which must be described in order to give 
meaning and legitimacy to the optimum, to pre-exist in an objective way with the 
requisite properties; for this situation to obtain, we must, in particular, be able to 
describe a priori all possibilities of action and to get a single criterion accepted as 
an objective criterion, with which all those possibilities of actions can be evaluated 
and ranked from best to worst. 

Observing these aspects of decision-making reality, decision-aiding (DA) seeks 
to put science in the service of shedding light on managerial decisions and/or guiding 
complex decision-making processes within organized systems, but DA places limits 
on its ambitions. It aims, above all, through a constructive, and not simply a 
descriptive, approach: 

- to provide elements of a response to certain questions which an actor involved 
in a decision-making process will consider, particularly within the framework of 
working hypotheses which allow actors to take account of an imperfect description 
of past, present and future reality; when they are mobilized in this way, the models 
and algorithms of operational research are extremely useful; 

- to provide means for giving greater coherence between the final decision 
reached and the objectives and/or systems of values which are those of actors 
involved in a decision-making process. 

This is to say that even if the DA approach remains essentially scientific (with 
formalized models, hypothetico-deductive reasonings or inference, optimization 
computations, ... ) the point is no longer - or only very infrequently - to discover or 
even to approach an ideal decision whose optimality should be obvious to any 
intelligent actor participating in good faith. As we shall point out, all reference to this 
kind of ideal may disappear. As a corollary, because DA helps to construct, and not 
simply to describe, it should give pride of place to a dynamic approach facilitating 
easy insertion of DA practitioners into the decision-making process. In some cases, 
DA can thus contribute to legitimating the final decision. 

1 This stopping point may be a temporary one and may be concerned with only a fragment of the overall 
decision; thus it is generally a point of departure for another process linked either to implementing the 
decision arrived at, or, due to the partial andlor temporary nature of this decision, linked to another phase 
of the same decision-making process. 

DECISION-AIDING TODAY 1-3 

1°) It is rare for the decision to be the instantaneous act of a single readily 
identified, rational and omnipotent decision-maker. To the contrary, it is much more 
likely that arriving at a decision forms a part of an ongoing process, for which a 
given decision provides a stopping point I; often, this process is not very rational. 
It draws in multiple actors who play out their parts within a complex context, with 
more or less conflicting stakes. 

2°) It is very unusual for preference, which must be described in order to give 
meaning and legitimacy to the optimum, to pre-exist in an objective way with the 
requisite properties; for this situation to obtain, we must, in particular, be able to 
describe a priori all possibilities of action and to get a single criterion accepted as 
an objective criterion, with which all those possibilities of actions can be evaluated 
and ranked from best to worst. 

Observing these aspects of decision-making reality, decision-aiding (DA) seeks 
to put science in the service of shedding light on managerial decisions and/or guiding 
complex decision-making processes within organized systems, but DA places limits 
on its ambitions. It aims, above all, through a constructive, and not simply a 
descriptive, approach: 

- to provide elements of a response to certain questions which an actor involved 
in a decision-making process will consider, particularly within the framework of 
working hypotheses which allow actors to take account of an imperfect description 
of past, present and future reality; when they are mobilized in this way, the models 
and algorithms of operational research are extremely useful; 

- to provide means for giving greater coherence between the final decision 
reached and the objectives and/or systems of values which are those of actors 
involved in a decision-making process. 

This is to say that even if the DA approach remains essentially scientific (with 
formalized models, hypothetico-deductive reasonings or inference, optimization 
computations, ... ) the point is no longer - or only very infrequently - to discover or 
even to approach an ideal decision whose optimality should be obvious to any 
intelligent actor participating in good faith. As we shall point out, all reference to this 
kind of ideal may disappear. As a corollary, because DA helps to construct, and not 
simply to describe, it should give pride of place to a dynamic approach facilitating 
easy insertion of DA practitioners into the decision-making process. In some cases, 
DA can thus contribute to legitimating the final decision. 

1 This stopping point may be a temporary one and may be concerned with only a fragment of the overall 
decision; thus it is generally a point of departure for another process linked either to implementing the 
decision arrived at, or, due to the partial andlor temporary nature of this decision, linked to another phase 
of the same decision-making process. 



1-4 DECISION-AIDING TODAY 

1.1.2 Getting away from arithmo-morphism 

With this term, borrowed from Alain Scharlig, we designate the turn of mind which 
consists of using arithmetic to keep account of heterogeneous factors and phenomena 
on a single scale on a common unit (Dollar for instance); arithmo-morphism 
underlies the belief which holds that in any decision-making context, there should be 
an "optimal" decision, i.e., a decision which is better or at least as good as any other. 

In many cases arithmo-morphism is extremely reductive: 
- it can lead to neglecting, wrongly, certain aspects of reality; 
- it facilitates setting up equivalencies, the fictitious nature of which remains 

invisible; 
- it tends to present features of one particular system of values as objective. 
These are the unwanted effects against which we must arm ourselves. This is 

especially true since their deceitful nature allows them to pass unobserved, as the 
examples given below will demonstrate. 

Arithmo-morphism encourages actors in a decision-making process to attempt to 
place a monetary value on effects and attributes of a purely qualitative nature. In 
order to do so, we may resort to various procedures which are often very artificial. 
For example, we construct a behavioral model incorporating one or more interpreta
ble parameters such as a price, for which we seek values such as to reproduce as 
accurately as possible certain types of behavior observed in the field: these values 
are referred to as revealed prices. We may also seek to provide an explanation for 
responses given in surveys in which participants are asked to compare fictitious 
situations, in which case we speak of state preferences. We can, likewise, place 
individuals in the context of an artificial market; here we refer to contingent 
evaluations. Within a more theoretical context, the monetarisation of external effects 
has long been a subject of concern to economists dealing with Neo-classical theory. 
As interesting as all these attempts may be (see especially Gregory et al. [27]; 
Johansson [31]; Le Pen [38]; Mishan [43]; Perez [51]; Ray [57]; Sugden and 
Williams [76]), it would appear that in many cases they try to give explanations of 
very diverse value systems through a single, or even several, unitary prices 
interpretable as an average value within the scope of a rather unrealistic model, 
because founded on more or less falsified hypotheses. The idea of approximation is 
often given prominence, at the risk of losing sight of the fact that what is approxima
ted remains subjective and extremely ill defined. 

In France, decisions concerning the choice of infrastructures to be developed for 
public transportation systems gives high priority to the internal rate of return. 
Although the definition of this rate is very finely honed to take into account very 
complex real-like situations, it can be criticized from several standpoints; it fails to 
deal with certain consequences of the final decision which deserve to be taken into 
account (see especially STP [74] 2). It was for this reason that a working group 
composed of government representatives, transportation firms and some research 

2 Official report published by Syndicat des Transports Parisiens, II avenue de Villars, 75007 Paris, France. 
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institutes 3 acted to substitute this single criterion in favour of a family of multiple 
criteria reflecting eight different points of view (STP [75]). Henceforth, no 
investment project should be characterised by a single figure (rate of return) but by 
a series of evaluations designed to bring out separately: 

- the way in which the project contributes to reaching certain overall objectives; 
- the impact it is thought to have on travel, the environment, employment, public 

finance and the financial equilibrium of public transportation firms; 
- its economic and social profitability; 
- factors of resistance likely to interrupt completion of the project. 
The preceding considerations show (as do many of the examples of applications 

cited in the bibliography) that it is often appropriate to avoid the dangers of arithmo
morphism by delimiting a broad spectrum of viewpoints likely to structure the 
decision-making process with regard to the actors involved. A criterion family can 
then be constructed which is capable of dealing with these structure-providing points 
of view and of allowing decision-makers to debate the respective roles (weight, veto, 
... ) that each criterion might be called upon to play during the decision-making 
process. 

Thus, in order to escape arithmo-morphism, decision-aiding (DA) becomes in 
many cases, multicriteria decision-aiding (MCDA). This means that it is supported 
by multiple scales, which, in general, cannot, in any objective way, be reduced to, 
or converted in a single one. In such conditions, rather than dismissing or concealing 
subjectivity, it is important to make an objective place for it which will be 
compatible with a plurality of expression. 

1.1.3 Decision-aiding: to what end? 

It evolves from what we have said thus far that the goal of DA is not to set forth 
objective truths. Rather more modestly, DA aims at establishing, on recognized 
scientific bases, with reference to working hypotheses, formulations of propositions 
(elements of responses to questions, a presentation of satisfying solutions or possible 
compromises, ... ) which are then submitted to the judgment of a decision-maker 
and/or the various actors involved in the decision-making process. In order to 
accomplish this goal, DA draws its support from models (see Appendix). These 
models are not necessarily (more of less simplified) descriptions of hard-liner reality. 
We could imagine, for example, the preferences that one of the actors might have in 
mind relative to numerous potential actions with very complex ensuing consequences. 
These preferences might evolve under the influence of decision-aiding or under the 
influence of other actors. Which is to say that the role of decision-aiding is not to 
discover hidden truths, but rather to contribute to constructing 4 individual 

J The author of the present chapter served as a member of this commission, representing the LAMSADE 
Research Center. 

4 For more details on this constructivist aspect of DA, see Roy [59,61]. 
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convictions, collective decisions and compromises between multiple, and often 
conflicting, rationalities, stakes and values. To situate DA's contribution correctly, 
it is important to remember (as underlined by Thepot [78]) that "The modeling 
procedure presupposes nothing concerning the rationality of the individual, whose 
capacity of investigation and observation are accepted for what they are, including 
their limitations and imperfections. On the other hand, it postulates the full and entire 
rationality of the solicited third party" in decision-aiding activity. Thus we see the 
nature and scope of the role played in this activity by hypothetico-deductive 
reasoning and, in particular, optimization computations. 

Due to its rigourous conceptual architecture, decision-aiding (see Glossary in 
Appendix), decision-aiding can contribute to structuring and organizing the decision
making process. It may follow that this aiding will both respond to questions and 
help to choose or construct solutions. 

In this respect, it is important to underline that DA can, in certain cases, result 
in reorienting the analysis of solutions envisaged early in the decision-making 
process towards a deeper understanding of the problem, and in provoking a debate 
focusing on other types of questions, namely: who are the actors involved and what 
are the stakes, the points of view and the axes of meaning for the criteria used?; 
where are the constraints, the possibilities?; how can we anticipate the effects of a 
given action under consideration?; what causal links allow us to evaluate an action's 
consequences? how do we weight up the pros and cons of their advantages and 
disadvantages?, .. , The original formulation of a problem can thus be significantly 
modified as a result of the framework for "concertation" 5 provided by DA. 

DA may facilitate concertation between stakeholders and contribute to 
legitimating the decision. Although this legitimization could, of course, be obtained 
in other ways, decision-aiding presents the advantage of being open-ended. The 
sources of legitimization can, in a certain way, be considered to come from different 
rationalities, each one characterized by its own system of values and internal logic. 
DA cannot claim to unify or synthesize these systems of values, logical approaches 
to dealing with information, rationalities or the foundations of legitimacy when two 
or more clash within the same decision-making process. Nevertheless, in a certain 
number of cases, DA should allow participants to structure debate and facilitate 
concertation, especially by helping to establish a climate of confidence and by 
providing a common understanding of the problem. Discussion could, for example, 
be organized around the aspiration and rejection levels on each of the scales, the 
relative weights attributed to each criterion, the possibilities of compensation between 
poor and excellent performance levels, veto thresholds, etc. The comparison of 
results stemming from these different options may, of course, bring to light deep, 
unresolvable disagreements. It may also facilitate partial agreements, for example 

~ "Concertation" is a French word which has no equivalent in English. In a decision aiding situation, this 
word covers a conception of dialogue between actors and/or group reflection so as to progress towards 
a good and common understanding of positions of each actor and/or of the questions under examination. 
The objective of these dialogue and/or reflection is to make a decision or/and to choose a way to 
formulate and solve a specific problem, as far as possible in a consensus way. 
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concerning either the elimination of certain potential actions (see Bana e Costa [5)) 
or the relative position of some of them (see Bollinger et at. [II)). In such cases, 
decision-aiding may constitute a source of legitimation for recommendations and/or 
conclusions arrived at during the decision-making process. Indeed, whatever the 
degree of scientific character the different parties may attribute to a given source of 
legitimation, its pertinence to the problem may be recognized by many of the 
stakeholders. Thus between the two extreme positions, legitimacy based on relative 
positions of power (in which context decision-aiding plays no role), and legitimacy 
sought above all on bases we call scientific, grounded in a single system of values 
(the special sphere of activity for traditional DA), there is room for more complex 
situations in which different rationalities are taken into account and in which DA 
should be able to play a significant role. 

Research undertaken over the past thirty years has produced a number of 
procedures well suited to a variety of decision-making contexts. Easy-to-use 
computerized tools 6 facilitate using these procedures. Making use of one or several 
working hypotheses, these procedures allow us to reply to questions and elaborate 
recommendations. In real time, they may also serve to guide the unfolding of a 
decision-making process. As correctly emphasized by David [18], decision-aiding 
should not be seen as aid intervening only at the very moment a choice is made. He 
concludes the first part of his article with the following words: "In what follows, we 
must consider decision-aiding from a functional perspective in order to understand 
what kind of aid actors in a decision-making process need, as well as from a critical 
standpoint to take into account the fact that any DA procedure involves taking steps 
which entail the irruption of a new actor into the decision-making process" 
(Translated from the original French text). Although the angle from which David 
looks at decision-aiding differs significantly from the one adopted in this chapter, the 
division of what follows here into two sections is not unrelated to David's dual 
perspective. 

1.2 RIGOROUS CONCEPTS FOR ANALYSING AND COMMUNICATING 

As far as science is concerned, inaptitude in the selection of the appropriate words 
chosen to restore a line of argumentation will most often lead to a complete 
misunderstanding of the latter (d'Espagnat [23], translated from the French text). 

Someone who wants to be convincing should put his faith, not in the right 
argument, but in the right word, for words will always have more power than 
meaning (Conrad, translated from the French, following Flaubert and Voltaire). 

The work involved in analysis, as well as the requirements of communication 
among actors of different backgrounds, is often hindered by confusions engendered 
by an insufficiently rigorous vocabulary in which the terms used do not necessarily 
have the same meaning for all participants. Enlarging the field of operational 
research, decision-aiding today offers a conceptual architecture (see the glossary), 

(, To avoid any confusion, the word tool will be used here only for computer-based methods. 
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which has developed gradually through contact with concrete problems and aims at 
responding, in a more or less limited way, to at least six large categories of concerns; 
the following paragraphs provide a rapid survey of this. 

1.2.1 Identifying potential actions (or alternatives) which deserve consideration 

Depending on the decision-making contexts, the object under examination can be of 
a widely varying nature. The concept of potential action and the somewhat more 
restricted one of alternative should help to make this more precise. In practice, 
however, these terms are replaced by others which are more concrete or more 
suitable, such as: scenario, plan, programme, project, proposal, variant, dossier, 
operation, investment, solution, ... 

In decision-aiding, we endeavor to specify contents which are as clear and 
precise as possible for each of the potential actions (or alternatives) which deserve 
to be considered within a given phase of the decision-making process. Let us 
consider the case of a company S concerned with developing its research and 
development (R & D) program for the following year. It is possible to ask each of 
S's divisions to establish R&D proposals following a given model. Each proposal 
can be regarded, at this stage, as a potential action. It may be accepted as written in 
the next R&D program, or it may be rejected. It might be sent back for modifica
tions. 

The potential action should enable us to formalize the object of the decision; in 
other words, what deserves to be evaluated in order to shed light on the decision. 
There are two ways in which the potential action can be envisaged: 

- a fragmented conception: the action is related to a fragment of a more 
comprehensive decision; this is the case in the preceding example in which each 
proposal received is a possible fragment of the research program (comprehensive 
decision); in this conception, two distinct potential actions can be conjointly 
implemented; 

- a comprehensive conception: the action is concerned with the whole of the 
decision; in the preceding example, this conception would result in conceiving of 
each potential action as a complete, feasible program; in this conception, two distinct 
potential actions are mutually exclusive; under these conditions, the potential actions 
become alternatives. 

At a given stage in the decision-making process (in other words, in a defined 
phase of study), it is fitting to reach an agreement on exactly what the concept of 
action covers, as defined within DA. We must then delimit the set of all actions 
worthy of interest for this phase of study. This is the set A of potential actions. It 
may be represented by a list, a series of maps, a stack of dossiers, ... If the potential 
action lends itself to a coding process, using a certain number of variables, the set 
A can then be represented (this is the case in mathematical programming) as the set 
of solutions which verify a family of constraints relating to these variables. Whatever 
the definition, we should emphasize that A will frequently be endowed with an 
evolutionary character as it will espouse the dynamics of the process in which 
decision-aiding is brought to bear. 
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1.2.2 Itemizing and structuring consequences relevant to decision evaluation 

Any factor, aspect or attribute attached to potential actions (price, quality, time limits, 
safety, image, market share, ... ) and likely to influence the final decision in one 
direction or another is designated by the general term consequence. Before each 
individual action can be specifically assessed and evaluated with respect to these 
consequences, it is essential to delimit and structure all of them. 

To accomplish this, one of two following approaches (which are not mutually 
exclusive) is customarily used. 

The top-down approach consists of deriving the consequences from one or 
several general objectives according to increasingly specific and refined points of 
view, dimensions and terms. A tree diagram of that type presented in Fig. 1.1 results 
from this process. 

The bottom-up approach begins by gathering information from the diverse 
stakeholders about the concrete, precise elements which, in their eyes, should inform 
and orient the decision-making process. The material thus gathered will enable us to 
establish a first list of "elementary consequences". We then seek to cluster 
progressively the elementary consequences selected according to increasingly more 
comprehensive families of points of view deemed to be significant by the stakehol
ders. This approach, which finds support in certain concepts which we cannot present 
here 7, may also produce a tree diagram. 

Whatever the approach used, the evaluation of actions on the basis of the 
consequences it has brought to light relies on, according to more or less explicit 
schemas, the supposed existence of causal links, usually complex and difficult to 
determine. Toulemonde [79] asks the following question: "Should we free evaluation 
from its causal links ?". Which, we observe, leads him (see [79], page 87) to 
underline that: evaluation "reveals factors which influence efficiency" but that 
evaluation "does not demonstrate its efficiency"; evaluation brings together different 
points of view on the theory of action and helps to sketch out an acceptable schema 
of causality (but only occasionally does it compare this schema with the facts). From 
this he concludes that "in most cases, what evaluation can contribute should be the 
construction of a schema of causality (a theory of action) accepted by all parties 
involved. Chains of causality whose scientific robustness is deficient will, nonethe
less, be able to resist political and social pressure inasmuch as they have been forged 
by common consent. When causal links cannot be proven by either observation or 
analysis, an attempt should be made to represent them as accurately as possible and 
to encourage a collective understanding of them ... The community of evaluators can 
usefully integrate this "evaluation-theorising" into its professional standards by giving 
it a place at least as eminent as the one it occupies, for example, in cost-efficiency 
analysis. In fact, the idea seems to be well on its way to acceptance and has 
encountered favourable reaction within professional community ... Schemas of 

7 For more details, consult Roy [62] (chapters 8 and 9). 
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causality, however, are still too often developed by technicians "in chamber". It is 
preferable to construct them by gathering together the implicit hypotheses of all the 
stakeholders (political decision-makers, operators in the field, clients)". (Translated 
from the French text). 

1.2.3 Conceiving of scales for evaluating without necessarily quantifying 

We should be able to evaluate each potential action relative to each elementary 
consequence and to each aggregate of these consequences present in the structure 
which has been elaborated (see Section 1.2.2) and, to whatever extent possible, 
according to each point of view. If the nature of what must be tackled allows it, the 
evaluation may be carried out in quantitative terms, using a monetary, duration or 
length scale. 

The mere fact of using a numerical indicator should not automatically lead us to 
look upon evaluation as quantitative. The very idea of quantity presupposes, first of 
all, that the total absence of quantity is meaningful, hence the importance of the role 
played by 0 in the scale. When the thermometer reads 20°C it is not twice as hot as 
when the mercury stops at lODe. In addition, when there is "quantity" equal 
differences in terms of evaluation reflect equal differences relative to what we are 
seeking to tackle. If we are concerned with a human being's thermal comfort, the 
variation between SO and 8°C can be perceived as non equal to the variation between 
150 and 18°C, even if there is equality with reference to certain underlying physical 
quantities. Likewise, with a percentage indicator the variation of satisfaction produced 
by an increase of 10% can be different according to whether the increase is from 
20% to 30%, 50% to 60% or 70% to 80%. If this is true, the scale is not quantitati
ve. This implies that certain basic arithmetic calculations (notably calculating 
averages) have no real meaning. 

In many cases, evaluation cannot be carried out in quantitative terms. We then 
use a qualitative ordinal scale such as the one shown in Fig. 1.2. It is often useful 
to assign numbers to the degrees: for example, 0 for the worst, 1, 2, etc. for the 
following degrees. Nonetheless, a numerical scale thus defined can lead us to think, 
wrongly, that the difference separating two consecutive degrees, such as the passage 
from 1 to 2 and from 4 to 5, reveal preference variations of the same magnitude. 
Whenever this is not true, these numbers have only ordinal significance. It is, 
therefore, senseless to add them up, subtract them or multiply them by a coefficient. 
With certain precautions, this may not apply notably to scales known as interval or 
ratio scales (see Appendix). 

o 

Completely 
unsuited 

2 3 4 

Ill-suited Fairly ill-sui- Fairly well- Well-suited 
ted suited 

Fig. 1.2: Example of a qualitative ordinal scale 

5 
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l.2.4 Validating a criterion family 8 to base and argue comparisons 

In decision-aiding, the term criterion 9 designates a way of evaluating which serves 
to position a potential action (or an alternative) on a preference scale corresponding 
to a well-identified point of view. This mode of evaluation may rest on a more or 
less complex indicator or even an aggregation of diverse indicators used to tackle 
consequences pertinent to the point of view considered. 

Validating a criterion family is above all making the significance axis, for each 
of the criteria intelligible for each of the stakeholders. It must be made clear what 
it allows us to apprehend, but also on what terms: on what scale? We must make 
sure that each criterion is perceived to be a relevant instrument for comparing 
potential actions; in other words, that it is capable of playing a role (the relative 
importance of which could vary considerably from one stakeholder to another) in 
laying the foundations for convictions, communicating concerning these, in debating 
and orienting the process towards a decision and, if the occasion arises, in 
contributing to its legitimation. 

Validating a criterion family also means verifying that this family satisfies a 
certain number of logical demands which ensure coherence (see Appendix: Coherent 
criterion family). 

1.2.5 Discussing the role allotted to each criterion in order to "weigh the pros and 
cons" 

A given actor will consider that the criterion g is "more important" than the criterion 
h. Another actor may have the opposite opinion. The first actor may go so far as to 
translate his system of values into numerical terms saying that the criterion g should 
be weighted at 3 if the criterion h is weighted at 1. The weight metaphor is often 
deceptive. This does not stem from the eminently subjective character of the value 
assigned to the weight; it comes above all from the fact that this figure has meaning 
only relative to its formal use in weighing the pros and cons in a comparison of 
different actions (see Mousseau [47], Roy and Mousseau [65]). 

Frequently, weights are perceived as coefficients which we should be able to use 
to multiply the numerical performance level of an action according to the criterion 
considered; the products thus obtained being then added on the set of criteria used 
in order to assign a score, utility or comprehensive value (called an average or 
weighted sum procedure) to the action. In this conception, assigning values to 
weights cannot be carried out without taking into close consideration the manner in 
which the scales associated with each criterion were defined. This is because weights 
operate like rates of exchange (usually called substitution rates or tradeoffs) which 

• This family may be reduced to a single criterion. 

• For more information on the terms in italics, see the Appendix. 
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detennine the magnitude of the gain we should obtain on a criterion in order to 
compensate with precision a unit loss on another criterion. 

This is entirely different when weights are interpreted as a number of votes given 
to each criterion in a voting procedure. This type of procedure leads to comparing 
actions exclusive of any notion of compensating possible losses with possible gains. 
Moreover, it allows us to integrate a veto mechanism into the comparison procedure 
and thus to apprehend another aspect of the importance allotted to each criterion. 

1.2.6 Apprehending the sources of incomplete knowledge in order to avoid imputing 
more to data than they really signify 

The sources of incomplete knowledge are legion. They stem primarily from (see Roy 
[58]): 

- the imprecision of instruments used to obtain measurements when we must give 
an account of present or past facts and/or events; 

- the uncertainty inherent in any assessment of future facts or situations; 
- the inevitable presence of some degree of ambiguity and/or arbitrariness in the 

way in which we take into account complex phenomena, whether they be in the past, 
the present or the future. 

Certain characteristics of the organizational context may contribute to reinforcing 
the impact of each of these three sources, whether they be related to phenomena of 
(conscious or unconscious) self-censuring or various actors' strategic behavior, and 
more generally all the obstacles which might hinder the free circulation of 
infonnation. 

The main instruments available to us (see especially Bouyssou [12], Perny and 
Roy [52]) to take this incomplete knowledge into account in our reasoning, as well 
as in more fonnal calculations are: probability distributions, dispersion and 
discrimination thresholds (see Appendix), fuzzy numbers, rough sets, ... 

1.3 PROCEDURES AND TOOLS FOR ELABORATING RECOMMENDA
TIONS AND/OR FOSTERING COOPERATION WITH A VIEW TO 
REACHING A DECISION 

Cooperation is the "raison d'etre" of organizations, but observation has shown that 
maintaining cooperative behavior remains a recurrent problem, an objective which 
is constantly threatened... As soon as a mini/num of complexity is reached, 
cooperation necessitates instruments of coordination acceptable to all actors. 
"Common languages" and communication techniques (data exchanges, working 
groups, .. .) set up and naturally extend the scope of cooperation. This is also true of 
information technologies or any approach to formalized modeling of activity which 
constitutes supports for collective action and allows actors to coordinate better with 
one another. Even with such instruments, actors cannot avoid the task of coming to 
an agreement concening the information they possess and the choice or impact of 
their actions. A grammatically "comprehensible" statement, accurate knowledge or 
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a coherence rule will not be legitimate, valid or acceptable per se to those who 
receive it (Hatchuel [28], translated from the original French text). 

The conceptual framework presented in Section 1.1.2 constitutes an environment 
within which numerous procedures and computerized tools have been conceived of 
in the context of decision-aiding, as introduced in Section 1.1.3. By referring to this 
conceptual framework and, if necessary, to certain appropriate procedures and tools, 
it is in many cases possible to contribute to creating a climate of confidence amongst 
actors and to facilitate concertation. 

This applies to preparing a decision-making process of an exceptional nature, as 
well as to the conception of a tool designed to provide time and again elements of 
a response to decision-making processes of a repetitive nature. It also applies to 
intermediate situations somewhere between these two types. 

The references provided below will enable the reader to form an idea of both the 
geographic and sectorial diversity of decision-aiding applications as practiced today: 
Anandalingam and Olsson [1], d' Avignon and Sauvageau [2], Balestra and Norese 
[3], Bana e Costa and Dinis das Neves [6], Bell et al. [9], Benson et al. [10], 
Bollinger et al. [11], Cerny [15], Dimitras et al. [20], Duckstein et al. [21], Eder et 
al. [22], Gomes [26], Hokkanen and Salminen [29], Jacquet-Lagreze [30], Krasojevic 
and Haller [34], Larichev et al. [36], Le Pen [38], Mareschal and Brans [39], 
McCord et al. [41,42], Mladineo et al. [44], Ostanello [48], Ozelkan and Duckstein 
[49], Perny and Vanderpooten [53], Pictet [54], Pomerol et al. [55], Roy et al. [66], 
Siskos et al. [71], Stathopoulos [72], Stewart and Scott [73], Teich et al. [77], Urli 
and Beaudry [81]. Inevitably selected somewhat arbitrarily, these works constitute 
only a small sample of the innumerable decision-aiding applications in progress today 
in a great variety of countries. 

Many models, procedures and tools mobilized by these applications are explained 
in the following chapters of this book. We therefore refer the reader to these chapters 
for information concerning formalism and the techniques of description and of 
producing results. In the four sub-sections which follow, we shall emphasize those 
fundamental aspects linked either to the object of these procedures and tools, or to 
the conditions in which they are used. 

1.3.1 The problem of aggregation 

Whenever a given potential action is rated higher than another one according to 
certain criteria, it will frequently be rated lower according to other criteria. As a 
result, in order to compare potential actions to one another, decision-aiding must 
allow us to reason by using, in a comprehensive way, all performance levels of each 
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potential action according to the n 10 criteria from the coherent criterion family 
used. 

Reasoning which thus takes into account all criteria comprehensively necessarily 
requires the support from a logic of aggregation (see especially Roy and Bouyssou 
[64], Tsoukias [80]). This logic assigns to each criterion a role characterized by the 
importance attributed to it within the working hypothesis under consideration 
(weights, aspiration levels, veto, ... ). This mechanism taken as a whole constitutes 
what is called a multicriteria aggregation procedure (MCAP). 

The average or the weighted sum constitutes the simplest example of a first type 
of such procedures. It results in aggregating all the performance levels of a potential 
action into a single number (see Belton, chapter 12 in this volume). Many other 
procedures, generally more sophisticated, translate the aggregation result into similar 
terms (score, utility, value, ... ). Among the procedures of this type we could cite 
MAUT (see Keeney and Raiffa [33]), AHP (see Saaty [68, 69]) and MACBETH (see 
Bana e Costa and Vans nick [7]). 

We should observe that the procedures of this first type lead us to define a single 
criterion synthesizing the n criteria of the coherent family. By the very fact that such 
a criterion family has been conceived of and explained, these procedures cannot be 
confused with monocriterion procedures (such as, for example, cost-benefit; see 
Johansson [31], Mishan [43], Ray [57], Sugden and Williams [76]) which skip over 
this multicriteria phase of analysis. It is not only the form of the single criterion 
which may be different, but also the way the team of analysts is integrated into the 
decision-making process, as well as the opportunities it offers for interpreting and 
discussing results. 

The methods known as the ELECTRE type (see Brans et al. [14], Diez de Castro 
et al. [19], Goicoechea et al. [25], Maystre et ai. [40], Roy [60], Scharlig [70], 
Vanderpooten [82], Vincke [83] and in this volume chapter 11) find their support in 
a second type of MCAP, which proceeds by pairwise comparisons. The result of this 
comparison is formulated in terms such as indifference, weak preference, strict 
preference, incomparability, .,. It is obtained by applying rules which are generally 
not very or not at all compensatory and which remind us of a voting mechanism with 
a possible veto. 

The procedures most commonly employed today to structure the decision-aiding 
approach come from one of the two preceding types. Others, however, have been 
suggested (see especially Bana e Costa [4], Gardiner and Vanderpooten [24], 
Pardalos et al. [50] and in this volume Wierzbicki, chapter 9; Stewart, chapter 10; 
Slowinski et ai., chapter 14; Pomerol and Perny, chapter 15; Chipperfield, chapter 
16). 

10 It is possible that a single criterion (n = I) might have been constructed straightaway on the bases of 
considerations presented in 1.2.2 and 1.2.3 above, in which case, we could speak of monocriterion 
approaches and procedures; under these conditions, the problem of aggregating, in the terms in which 
it is envisaged in this paragraph, becomes pointless. 
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1.3.2 From results to recommendations 11 

Decision-aiding activity frequently comes to an end without any recommendation 
being formulated. The results arrived at by agreeing on a coherent criterion family, 
obtaining one or more performance tableaux, bringing to light levels of aspiration, 
of rejection, of discrimination thresholds, of different sets of weights, ... all form a 
positive contribution that the actors (other than the team of analysts) involved in the 
decision-making process often judge to be satisfying. It is nevertheless desirable, in 
many cases, to go further, which presupposes using more or less formalized 
procedures (especially aggregation), in order to arrive at less rudimentary results. The 
procedures and tools conceived of in this perspective lead to results which usually 
take one of the following forms: 

- discovering one or even all of the optimal potential actions in a working 
hypothesis defined by a fixed set A and an optimization criterion; 

- selecting as restricted a number as possible of potential actions which justify 
eliminating all the others; 

- assigning each potential action to one category among those of a family 
previously defined, such as those shown in Fig. 1.3 below (see also 1.3.3.1 below); 

Actions for Actions for 
Actions for which imp le- which imp le- Actions for 

which imple- mentation could mentation can be which imple-
mentation is be advised after advised only mentation is 

fully justified only slight chan- after significant inadvisable 
ges changes 

Fig. 1.3: Example of families of categories suitable for sorting procedures 

- ranking actions from the best to the worst, incomparabilities and ex aequo 
remaining possible (see also 1.3.3.2 below). 

The way in which DA is envisaged (the problematic 12) conditions the form of 
results which it is suitable to look for. The four problematics mentioned above are 
not the only possible ones (see Bana e Costa [5]). 

Except under very unusual conditions, the result arrived at by treating a set of 
data through any individual procedure should not be confused with a well-founded 
scientific recommendation (see Roy [61)). Repeated calculations, using different, but 

II This term is increasingly used in DA to replace "prescription". The latter is, in many cases, inappropriate 
(see Hatchuel [28], Roy [61]) for designating what a team of analysts accompanying a decision-making 
process might achieve. 

12 As in Roy [62], we will use this term for translating the French word "problematique". We considered 
translating this term as problem statement, problem type, or problem formulation, but felt that these 
could give the wrong impression. 
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equally realistic sets of data (given the imprecise, uncertain and indeed ill-determined 
nature of certain factors or parameters; see end of section 1.2.2), are generally 
necessary to elaborate a recommendation on the basis of robust conclusions 
stemming from the multiple results thus obtained (see Roy [63] and infra Tanino, 
chapter 7). The statements of the proposals which make up the recommendations 
should be submitted to the assessment and discernment of the decision-maker 13 

and/or the actors involved. 

1.3.3 Decision-aiding and working in a committee 

DA procedures and tools can be mobilized to facilitate working in groups. As in all 
group work, this presupposes that a minimum of "meta-rules" be accepted. We shall 
limit the discussion of DA's contribution here to two specific cases. 

1.3.3.1 Case number 1 14 

For strategic reasons, a company we shall refer to as R carries out a considerable part 
of its research and innovation work in the area of markets it can obtain following a 
tender for bids. R receives numerous tenders. Replying to them necessitates the 
equivalent of several months of work and sometimes calls for starting up research 
which is costly in terms of material. For this reason every week a committee C, 
presided over by the sales manager in charge of the tender budget examines each 
week the "new business" files received. Each of these files comes from a service 
within R which has suggested replying to a tender it has received. Each of these is 
treated as a potential action. C must decide, for each of them, whether to accept or 
refuse and, in the case of acceptance, how much money to allocate to the service in 
question for developing a response on behalf of R. 

Using information contained in the file, the reply proposal is evaluated according 
to nine criteria, covered by three structure-providing points of view: 

- chances of being awarded the contract; 
- strategic interest for R; 
- economic interest. 
On this basis, the file is assigned by the ELECTRE TRI method to one of the 

following categories: 
- no restriction concerning acceptance; 
- some hesitation concerning acceptance (a doubtful "yes"); 
- hesitation concerning refusal (a doubtful "no"); 
- unhesitating refusal. 

L1 In DA, this tenn usually designates the entity (individual or group of individuals) on whose account and 
in whose name DA is used. 

14 The rule of client confidentiality prevents us from revealing our sources here. 
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For each item of business the committee has the file, the nine evaluations and the 
category assigned to it. Any member of the committee may query any of the 
information leading to the evaluation according to one or more criteria (different 
assessment concerning certain risks, allocation of resources other than those 
requested, ... ). When the bases are thus modified, new evaluations are immediately 
recalculated and the resulting reassignment is immediately made known. The 
committee remains sovereign: it makes its decision straightaway or defers it until the 
following week. 

1.3.3.2 Case number 2 15 

In 1993, the Swiss Confederation's Federal Office of the Environment (OFEFP) 16 

began coordinating an inter-cantonal project for the incineration of urban wastes. The 
project primarily involved three cantons. One of these, Geneva, already possessed its 
own waste incinerator (WI), "Les Cheneviers"; according to the agreement concluded 
in 1993, each of the other two cantons, Vaud and Fribourg, would ultimately be 
equipped with its own waste incinerator. 

In February of 1996, after an official appraisal of the Chene viers facility, the 
canton of Geneva offered to incinerate, on an annual basis, an additional 130,000 
tonnes of waste from the cantons of Vaud and Fribourg. This offer brought into 
question the necessity of constructing simultaneously the waste incinerators planned 
for Vaud ("Tridel") and Fribourg ("Posieux"). 

Confronted with the difficulty of either justifying the construction of both these 
projects or of choosing which of the two should be delayed, or even completely 
abandoned, the political authorities for the three cantons, together with the Director 
of the OFEFP appointed a technical commission to examine and compare the Tridel 
and Posieux projects as objectively as possible. 

Composition of the commission 
( ... ) The commission was composed of 9 people representing 4 actors: 
- the canton of Geneva, represented by two officials from the Cheneviers WI; 
- the canton of Vaud, represented by the person in charge of the Tridel project 

and the head of the canton's Office of the Environment; 
- the canton of Fribourg, represented by two officials from the national Office 

of the Environment in Fribourg and an attorney assigned to the Posieux project; 
- two representatives from the Federal Office of the Environment, appointed as 

technical advisors, who assumed the task of presiding over the commission. 
In addition to these representatives, an analyst was appointed from the Institut 

de Genie de I'Environnement (JGE) associated with the Ecole Poly technique Federale 
de Lausanne to act as a methodology advisor. His task was that of overseeing all 

I; Translated from excerpts of the French text by D. Bollinger et al. [II]. 

Ii, Office federal de I'environnement de la Confederation suisse. 
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Ii, Office federal de I'environnement de la Confederation suisse. 
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phases of the decision-making process, including the results and how to interpret 
them. 

It was indispensable for this specialist in decision-aiding methods to be impartial. 
It would obviously have been undesirable if he could have been accused of 
manipulating the data. Moreover, each of the other actors in the process had to have 
total confidence in the analyst. His participation had to be limited to methodological 
aspects of the problem and their implementation. Elements influencing the results 
could come only from the actors themselves. 

Certain technical experts were contacted during the course of the commission's 
work in order to calculate costs or provide figures for other data (cardinal data). 

Working methodology 
In order to win over all the actors' confidence, the analyst must act in a wholly 

transparent manner, presenting the methodology of multicriteria methods in language 
that is clear and accessible. Thus a number of I5-minute talks were presented over 
time to the commission members at appropriate stages of the decision-making 
process. Certain basic principles of the multicriteria methods, however, were put 
forth from the outset: the interest of non-compensatory procedures and of using 
various weightings to take into account the importance of different points of view. 

All the actors must also agree on using the same criterion family. Theoretically, 
structuring scenarios 17 and constructing criteria constitute two separate, successive 
phases of the decision-making process. In practice, however, it is difficult to 
disassociate these two phases in real time. The first stage of the commission's work, 
therefore, focuses on these two phases simultaneously as "parallel" phases. Work 
sessions allowed commission members to discuss the evolution of the scenarios as 
well as that of the criteria. In the minds of the actors, who were not specialists in 
decision-aiding, these two aspects of the commission's work seemed very closely 
linked. 

Due to time constraints, it was necessary to opt for a simple, efficient starting 
point which would allow the actors to delineate the problematic quickly and to 
formulate it in terms of the multicriteria approach used. The technical representative 
from the federal ministry of the environment thus proposed a first rough draft 
structuring criteria and scenarios so that they could be discussed within an existing 
framework. The principle of "constructive demolition" was adopted, which is to say 
that this first draft was designed a priori to be thoroughly reworked, but it gave 
opportunities for structuring ideas on the basis of arguments often born of conflicts 
and agreements. 

Conclusions 
The general conclusion adopted unanimously by all members of the commission 

was the following: 
It appears that the three types of scenarios I, 2 and 3 can be recommended. They 

are nonetheless not equivalent. Two principal paths are likely to result in an 
appropriate solution for eliminating urban wastes in southern Switzerland: scenario 

17 i.e., potential actions. 
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1.1, the construction of both Tridel and Posieux (the original project); and one or the 
other of scenarios 3.1 or 3.2, in which only the Tridel WI would be constructed. 
Despite the widely divergent weightings of criteria proposed by the four main actors, 
these scenarios were systematically well-ranked. 

( ... ) Multicriteria analysis was able to show that scenarios of type 0 and 4 were 
not suitable for the problem being evaluated. The commission was able to justify the 
results of the ELECTRE III method by analysing the decisive criteria which ranked 
these scenarios last. 

( ... ) The federal office of the environment had called for the formation of a 
commission in order to be able to choose which waste incinerator would be built and 
which project would be abandoned. Yet the work of the commission resulted in 
recommendations that were clear and unanimous for all the actors. The scenario 
concerning the construction of both facilities according to the original project is 
certainly not perfect, but it is just as envisageable as the scenarios involving only the 
construction of Tridel. The OFEFP, as the ultimate decision-maker, is faced with the 
following possible courses of action: 

- maintaining its initial position and rejecting outright the construction of two 
new WIs; in this case, a type 3 scenario would be chosen, probably without the 
consent of the Fribourg cantonal government; 

- relaxing its original position and leaving the choice of scenarios recommended 
by the commission to the political decision-makers; 

- repudiating the commission's report and calling for a fresh evaluation. 
( ... ) 

1.3.4 Judicious use of software 

There is a wide variety of software commercially available. In order to make good 
use of it, it is important to perceive clearly: 

- The nature of the aid each specialized computer program can provide. This 
may be a matter of: structuring the consequences with a view towards elaborating a 
coherent criterion family, assigning a weight to each of the criteria from a family, 
determining or approaching an optimum, selecting among potential actions, assigning 
each potential action to a category, ranking potential actions, orienting exploration 
so as to find a compromise, ... 

- The nature and meaning of the data to be elaborated, in order to use a 
specialized computer program correctly. 

- A minimum of understanding concerning the essential hypotheses giving 
meaning to the results obtained, in order to avoid unfortunate errors of interpretation. 

Anyone using software must remember that it is no more than a support, useful 
in implementing a method or manipulating a model. Its function is not to resolve the 
problem. It is only designed to facilitate the work of whoever is using the method 
or model. 

The conveniences provided by a specialized computer program (user-friendliness, 
ergonomy) for recording and transforming data, manipulating various phases of 
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calculations and presenting results often constitute advantages which can influence 
the user in his or her choice of method or model. But do the latter correspond to the 
problem under consideration? Are they well-suited to the decision-making context? 
These aspects must not be given a back seat. Of course, the nature of the interaction 
which the computer program helps to create between user and method or model 
constitutes an important means of appropriating the latter. Yet, unfortunately, this has 
perverse effects which Thepot [78] rightly underlines: "With the development of 
computer tools, computation and representation are now possible in ways we could 
have scarcely imagined twenty years ago. Yet, at the same time, this has brought 
about a popularization of methods which, when ill-advisedly applied, discredit 
modeling by confining it to an instrumental role." (translated from the original 
French text). 

1.4 CONCLUSIONS 

First of all, it would seem necessary to emphasize that decision-aiding, as presented 
here, cannot claim to play a positive role in all decision contexts. Characterizing 
those decision-making contexts in which DA should be pertinent will necessitate 
further research and experimentation. 

Secondly, we should remember that even in the so-called hard sciences, there is 
no known objective criterion (see Chalmers [16], Popper [56]) which allows us to 
affirm that a theory is true. Similarly, we cannot hope to prove scientifically, in a 
given decision-making context, that a given decision is the best. DA can, however, 
make clear that a solution thought to be good is, in fact, bad. 

The concepts, procedures and tools which we have spoken of here should be seen 
as keys capable of opening doors which give access to pathways allowing us to bring 
the implicit to the surface, to bring unavoidable subjective elements out into the open 
and to deduce consequences from those that are objective, within the framework of 
working hypotheses. We are within our rights to expect of DA that it will illuminate 
choices, not only by the results thus brought to light, but also in organizing debate 
on objectives and ends. More generally, the roles of investigating organizational 
operations, of conformation, of accompanying change and of exploring what is new 
that management instruments are usually called upon to play can in certain 
circumstances, according to Moisdon [45], be given over to decision-aiding. 

In conclusion, it would seem reasonable to expect from decision-aiding that, 
depending on the case, it would contribute to: 

- analysing the decision-making context by identifying the actors, the various 
possibilities of action, their consequences, the stakes, ... 

- organising and/or structuring how the decision-making process unfolds in order 
to increase coherence among, on the one hand, the values underlying the objectives 
and goals, and, on the other hand, the final decision arrived at; 

- getting the actors to cooperate by proposing keys to a better mutual understan
ding and a framework favorable to debate; 

DECISION-AIDING TODAY 1-21 

calculations and presenting results often constitute advantages which can influence 
the user in his or her choice of method or model. But do the latter correspond to the 
problem under consideration? Are they well-suited to the decision-making context? 
These aspects must not be given a back seat. Of course, the nature of the interaction 
which the computer program helps to create between user and method or model 
constitutes an important means of appropriating the latter. Yet, unfortunately, this has 
perverse effects which Thepot [78] rightly underlines: "With the development of 
computer tools, computation and representation are now possible in ways we could 
have scarcely imagined twenty years ago. Yet, at the same time, this has brought 
about a popularization of methods which, when ill-advisedly applied, discredit 
modeling by confining it to an instrumental role." (translated from the original 
French text). 

1.4 CONCLUSIONS 

First of all, it would seem necessary to emphasize that decision-aiding, as presented 
here, cannot claim to play a positive role in all decision contexts. Characterizing 
those decision-making contexts in which DA should be pertinent will necessitate 
further research and experimentation. 

Secondly, we should remember that even in the so-called hard sciences, there is 
no known objective criterion (see Chalmers [16], Popper [56]) which allows us to 
affirm that a theory is true. Similarly, we cannot hope to prove scientifically, in a 
given decision-making context, that a given decision is the best. DA can, however, 
make clear that a solution thought to be good is, in fact, bad. 

The concepts, procedures and tools which we have spoken of here should be seen 
as keys capable of opening doors which give access to pathways allowing us to bring 
the implicit to the surface, to bring unavoidable subjective elements out into the open 
and to deduce consequences from those that are objective, within the framework of 
working hypotheses. We are within our rights to expect of DA that it will illuminate 
choices, not only by the results thus brought to light, but also in organizing debate 
on objectives and ends. More generally, the roles of investigating organizational 
operations, of conformation, of accompanying change and of exploring what is new 
that management instruments are usually called upon to play can in certain 
circumstances, according to Moisdon [45], be given over to decision-aiding. 

In conclusion, it would seem reasonable to expect from decision-aiding that, 
depending on the case, it would contribute to: 

- analysing the decision-making context by identifying the actors, the various 
possibilities of action, their consequences, the stakes, ... 

- organising and/or structuring how the decision-making process unfolds in order 
to increase coherence among, on the one hand, the values underlying the objectives 
and goals, and, on the other hand, the final decision arrived at; 

- getting the actors to cooperate by proposing keys to a better mutual understan
ding and a framework favorable to debate; 



1-22 DECISION-AIDING TODAY 

- elaborating recommendations using results taken from models and computatio
nal procedures conceived of within the framework of a working hypothesis; 

- participating in the final decision legitimization. 
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APPENDIX: GLOSSARY lR 

The first occurrence of a tenn used elsewhere as an item in the Glossary is italicized. 

ACTION (potential action) 

A generic tenn used especially in theoretical presentations to designate that which 
constitutes the object of the decision or that which decision-aiding is directed 
towards. In practice, the tenn action may be replaced by such tenns as scenario, plan, 
program, project, proposal, variant, dossier, operation, investment or solution, 
depending on the situation. 

The concept of action does not, a priori, incorporate any notion of feasibility 
or implementation. An action is qualified as "potential" when it is deemed possible 
to implement it or simply when it deserves our interest within the decision-aiding 
context. A potential action may thus be a fictitious one. 

ACTOR 

A very general tenn designating any individual, entity or community likely to plan 
any role whatsoever, directly or indirectly, in the unfolding of the decision-making 
process. 

AGGREGATION 

See Multicriteria Aggregation Procedure. 

ALTERNATIVE 

A tenn used instead of action when modeling is such that two (distinct) potential 
actions can in no way be conjointly implemented. This mutual exclusion comes from 
a conception of potential action which tackles the object of the decision or that 
towards which decision-aiding is directed in a comprehensive way. In some cases, 
a different conception called fragmented may be adopted so that several potential 
actions can be implemented conjointly. Alternative is not an appropriate word in such 
cases. 

ASPIRATION LEVEL 

A degree on a criterion scale marking a perfonnance level which, if achieved by an 
action according to this criterion, indicates sufficient satisfaction. This is to say that 
any improvement on this scale is deemed non-significant of a real increase in 
satisfaction. 

" For more specifics, the reader may refer to Roy [62], Roy and Bouyssou [64]. 
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COHERENT CRITERION FAMILY 

A family of n (> 1) criteria which satisfies the three following requirements: 
a) Exhaustiveness: No argument acceptable to all stakeholders can be put 

forward to justify a preference in favour of action a vis-a-vis action b when a and 
b have the same performance level on each of the n criteria of the family. 

b) Cohesiveness: Stakeholders unanimously recognize that action a must be 
preferred to action b whenever the performance level of a is significantly better than 
that of b on one of the criteria of positive weight, performance levels of a and b 
being the same on each of the other n - J criteria. 

c) Nonredundancy: One of the above requirements is violated if one of the n 
criteria is left out from the family. 

Remark: None of the above requirements implies that the criteria of a coherent 
criterion family are independent. Independence, however, may be desirable and 
sought after. We must specify what type of independence we hope to attain. The 
concept of independence is complex and multicriteria analysis has allowed us to give 
prominence to some important distinctions in this regard (structural independence, 
preferential independence, utility independence, ... ). 

In many cases, the coherent criterion family aims first of all at bringing to each 
stakeholder elements of judgment able to facilitate concertation and debate. So, the 
criterion family must respond to two additional requirements: 

d) Understanding: the meaning of each criterion seems sufficiently intelligible 
to each stakeholder. 

e) Commitment: the set of the n criteria seems appropriate to each stakeholder 
for tackling the main pertinent consequences. 

CONSEQUENCE 

This term is used to designate any effect or attribute inherent in or stemming from 
the implementation of any potential action and which should be taken into 
consideration to illuminate a decision. An effect or attribute should be taken into 
consideration whenever it may interfere with an actor's objectives or system of 
values as a primary element capable of influencing the way in which he/she 
conceives of, modifies or argues hislher preferences. 

CONSTRAINT 

A condition imposed on an action in order for it to belong to a set of potential 
actions which are of interest at a given point in the decision-making process. 

In mathematical programming, potential actions correspond traditionally only to 
feasible actions. It follows that the term takes on a more restrictive meaning in this 
case. 
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CRITERION 

A tool constructed for evaluating and comparing potential actions according to a 
well-defined point of view. 

The evaluation of an action according to a criterion may bring into play more 
or less complex computation rules, a more or less extensive surveyor the opinion of 
one or more experts. Whatever procedure is used, we must take into account the 
pertinent effects and attributes (i.e., consequences) according to the point of view 
considered. To do so, it is often convenient to use one or more indicators. 

The evaluation of an action according to a criterion is made concrete through 
its performance level which positions it on a preference scale. Two actions are 
compared according to the point of view considered just as their performance levels 
are compared. 

The evaluation instrument made up of a criterion and a fortiori a coherent 
criterion family aims above all to provide some elements of assessment capable of 
facilitating concertation and debate to the different stakeholders involved. It is thus 
necessary that the coherent criterion family selected be deemed legitimate (commit
ment requirement) by each of the stakeholders and that the latter understand 
(understanding requirement) the way in which their concerns are translated in the 
performance tableau. This correct understanding presupposes, in particular, that the 
terms in which the performance is formulated for each of the criteria (unit for a 
quantitative scale, description of the degree if the scale is qualitative, ... ) should be 
readily intelligible to the various stakeholders, and not only to the initiates. 

All these performance levels cannot necessarily be seen as the approximation 
of an objective reality that the criterion would aim to apprehend as well as possible. 
The criteria can, in fact, sometimes be conceived so as to give an account of 
subjective aspects. When the reality to be tackled is very complex, the search for a 
good approximation is likely to result in illusory refinements, which, moreover, may 
cloud understanding and debate. Such refinements could also make it easier to give 
a "little push" in a certain direction. The absence of objective bases for anchoring the 
real value of a performance level according to certain points of view should not lead 
us to eliminate these points of view, in particular if the actors make use of them to 
conceive, modify and argue for their preferences. In the same way, the subjective 
character of certain effects or attributes only occasionally constitutes a valid 
argument for reducing their relevance and scope. 

To be accepted by all stakeholders, a criterion should not bring into play in a 
way which might be determinant, any aspects of the system of values that certain of 
the stakeholders would find necessary to reject. This implies, in particular, that the 
direction in which preference is varied along the scale is not open to contest. On the 
other hand, this does not exclude significant divergences among stakeholders as to 
the relative importance which can be assigned to each criterion: a given criterion, 
important for some, could be judged to be of no interest for others (see entry on 
"Relative importance of criteria"). 
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CRITERION FAMILY 

See Coherent criterion family. 

EFFICIENT (action) 

An action a is efficient in a set A according to a criterion family F if any other 
action from A which is better than a according to at least one criterion proves to be 
not as good as a to at least one other criterion. The action a is consequently efficient 
if and only if within A there is no action which is at least as good as a on all the 
criteria of F and strictly better than a on at least one of these. 

IMPORTANCE (relative importance of criteria) 

This is a complex notion concerned with the differentiation of roles that a 
stakeholder would like different criteria to play in the elaboration and argumentation 
of comprehensive preferences. Consequently, this notion refers to the system of 
values of the stakeholder in question. 

To define the idea of relative importance we frequently use the weight 
metaphor, according to which the greater the weight of a criterion, the more 
important role this criterion will play in forming comprehensive preferences. This 
metaphor is often 
misleading. The way in which the weights operate depends on the logic behind the 
multicriteria aggregation procedure. Thus in compensatory logics (in elementary 
weighted sum or in AHP or MAUT), assigning a greater numerical value to the 
weight of criterion g than to the weight of criterion h does not mean that the 
importance of g is greater than that of h. 

Because the notion of relative importance of criteria has meaning only relative 
to a stakeholder whose value system it reflects, this notion is necessarily infused with 
a measure of subjectivity. In most cases, this means that any search for a perfectly 
objective value or for a procedure allowing us to compare objectively any given 
action with any other, is illusory. This impossibility does not stem from multicriteria 
analysis. It is just as present, although often hidden (or even masked under the 
appearance of objectivity) in any monocriterion analysis. The single criterion's goal 
is, in fact, to evaluate heterogeneous effects and attributes with a common unit. The 
different criteria of multicriteria analysis, however, aim to provide structuring 
elements to apprehend these effects and attributes in relatively homogeneous 
categories. 

Thus cost-benefit analysis, for example, involves more or less implicit 
weighting, using techniques which translate values into monetary terms with 
reference to more or less fictitious markets. The weights thus arrived at are defined 
with reference to a very elegant economico-mathematical theory. The values assigned 
to these weights reflect the subjectivity of those who believe this theory is pertinent 
in guiding decisions. Other practitioners rightly refuse its legitimacy. In fact, the 
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theory rests upon rather unrealistic hypotheses and proves to be falsified in many 
decision contexts. 

Unlike what happens with monocriterion analysis, multicriteria analysis avoids 
to prejudge any aggregation logic, nor does it favor the value system of any 
individual stakeholders. The criterion family should form a framework for structuring 
dialogue and debate. This framework seeks to give the most fundamental subjective 
aspects their due in order to foster a confrontation among different rationalities. 

INDICATOR 

An instrument which synthesizes, in qualitative or quantitative terms, certain 
information which should lay the foundation for a judgment of an action relative to 
certain of its characteristics, attributes or effects (consequences) which might arise 
from its implementation. An indicator might lead to associate to an action: 

- either a simple state (urban motorway, ring-road, by-pass, ... ), 
- or a number (length, surface, cost, ... ). 
The set of possible states or values should not necessarily be conceived of to 

be a preference scale. If this set constitutes such a scale, the indicator can be used 
as a criterion. Several indicators may also be synthesized to define a criterion 
encompassing a broader point of view. 

MODEL 

A model is a schema which, for a given family of questions, is considered as an 
abstract representation of a class of phenomena that an observer has more or less 
skillfully removed from their environment to help in an investigation and to facilitate 
communication. 

A model is not necessarily a simplified description of reality. For the purposes 
of investigation or communication, it may propose a representation of the phenomena 
in question which relies on very unrealistic hypotheses. To the extent that it is 
contingent upon a family of questions, a model is more a caricature of real-life 
situations than an impoverished or approximate photograph of it. 

MULTICRITERIA AGGREGATION PROCEDURE (MCAP) 

A procedure which allows us to compare any two actions from a set of actions A by 
taking into account (in a comprehensive way) the performance levels of each action 
according to all the criteria of a given criterion family. 

OPTIMUM (action) 

An action a is an optimum action in a set A according to a criterion g if any other 
action in A is worse than or indifferent to a according to this criterion; in other 
words, if there is no other action a' in A whose performance level g( a') is better than 
g(a). 
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MULTICRITERIA AGGREGATION PROCEDURE (MCAP) 
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PERFORMANCE LEVEL 

The performance level of an action according to a criterion is the degree on the scale 
associated with a criterion on which this action is positioned. 

PERFORMANCE TABLEAU 

A double-entry table showing actions in rows and criteria in columns. At the 
intersection of row i and column j we find the performance level g/ a) of action ai 

according to criterion gj. 
It is important to indicate, for each criterion: 
- the associated scale and the direction of preference variation; 
- the values, if any, for the levels of rejection and aspiration, as well as for the 

discrimination thresholds. 

POINT OF VIEW 

A class of effects or attributes which share the same objective or the same type of 
concerns thought pertinent by at least one of the stakeholders for evaluating and 
comparing actions. 

A point of view is verbally defined by a sentence or several key-words. It may 
encompass a class of concerns of varying scope: a more or less open angle from 
which an action is examined. The family of structure-providing points of view should 
constitute a clear framework allowing us to apprehend all effects and attributes 
thought to be pertinent. Those structure-providing points of view should be few in 
number. As a result, it is necessary to identify some more limited points of view in 
order to give birth to criteria (the same structure-providing point of view may be 
used to create several different criteria). 

PROBLEMATIC 

The way in which decision-aiding is envisaged. In other words, the manner in which 
a problem is formulated in order to arrive at results judged to be appropriate for 
illuminating decisions. These results can take on various forms, namely: 

- selecting several actions (choice problematic); 
- assigning each action to a category belonging to a set of pre-defined 

categories (sorting problematic); 
- ordering actions along a complete weak order or a partial order (ranking 

problematic ); 
- providing only a performance tableau giving additional information (aspiration 

levels, rejection levels, discrimination thresholds, ... ). 
It is essentially the way in which DA is conceived of, with reference to 

integrating the team of analysis thoroughly into the decision-making process, that will 
orient the choice of the problematic. 
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RECOMMENDATION 

An assertion (not necessarily devoid of subjectivity) derived from a sequence of 
results based on various sets of data and/or sets of working hypotheses. 

REJECTION LEVEL 

A degree on a criterion scale which marks a performance level which, if not attained 
by an action according to this criterion, justifies rejecting this action whatever its 
performance levels might be on other criteria. 

RESULT 

An output of a procedure when it is applied to a set of data within the framework 
of a specific working hypothesis. 

SCALE (preference scale) 

A set of elements, called degrees, ranked according to a complete order; each degree 
is characterized by either a number or a verbal statement; a degree is used to 
translate the evaluation of an action, taking into account clearly specified effects and 
attributes; relative to these, all other things being equal, the ranking of degrees 
reflects the direction of preference variation in relation to situations which the 
degrees are used to characterize. A scale can be: 

a) Purely ordinal: the gap between two degrees does not have a clear meaning 
in terms of preference differences; this is especially true in cases with: 

- a verbal scale, when nothing allows us to state that pairs of consecutive 
degrees reflect equal preference differences all along the scale; 

- a numerical scale when nothing allows us to state that a difference fixed 
between two degrees reflects an unvarying preference difference when we move the 
pair of degrees considered along the scale. 

This kind of scale is called a qualitative scale. 
b) Quantitative: a numerical scale whose degrees are defined by reference to a 

clearly defined unit in a way that gives meaning, on the one hand, to the absence of 
quantity (degree 0) and, on the other hand, to the ratio between any two degrees as 
being equal to the ratio of the numbers which characterize them, each of them being 
interpretable as the addition of a given number (integer or fractional) of units of the 
quantity considered. 

c) Intermediate scale between the two extreme cases given above; this is 
especially the case with: 

- scales called interval scales: the ratio of numbers which characterize two 
degrees could not be significant but the ratio between differences in numbers 
associated with two pairs of distinct degrees is significant (example: evaluation of 
a temperature in Celsius or Fahrenheit from an energy point of view; to the contrary, 
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an action's immediate rate of return and, a fortiori, its internal rate of return can only 
with difficulty be regarded as being evaluated on an interval scale); 

- scales on which we can define a complete weak order on the set of degree 
pairs. 

We call this type of intermediate scale a non-quantitative numerical scale or a 
discrete scale (in the case of a finite number of degrees). 

The difference between two degrees that are sufficiently close together may be 
judged non-significant for differentiating two actions. This stems from the fact that 
the procedure used to position these actions along the criterion considered on one 
degree and on the other appears insufficiently precise (with regard to the complexity 
of the reality in question) or reliable (especially taking into account uncertainty 
concerning the future) to show a significant difference between two actions. The 
concept of discrimination threshold allows us to model this state. It allows us to 
work with available information without seeking to impoverish it by rounding off 
procedures or by defining classes in such a way that non-significant differences do 
not appear. Such practice produce unfortunate side effects. 

SIGNIFICANCE AXIS (of a criterion) 

An underlying dimension to which a criterion refers; in other words, a dimension 
which gives meaning to the comparison of any two performance levels according to 
this criterion. 

STAKEHOLDER 

Any individual, entity or community likely to take part in (possibly through the 
offices of an appointed intermediary) in the unfolding of a decision-making process 
with the intention of influencing that process with regard to objectives s/he holds or 
according to his or her own stakes. 

Certain authors 19 employ this term in a larger sense to designate any 
individual or group of individuals who have, consciously of unconsciously, an 
interest in the decision context. In other words, anyone holding a stake in a very 
broad sense. In this understanding of the term, future generations may also be 
stakeholders. The same is true of a team of analysts and many other actors. 

THRESHOLDS (dispersion and discrimination thresholds) 

A concept whose objective is, for each criterion, to take into account the imprecision 
of certain data concerned with past of present phenomena, the uncertainty of which 
affects our knowledge of the future, our difficulty in tackling very complex attributes 
and effects or, finally, the fact that certain precisions can be completely devoid of 
any informative value. 

I. See Banville et aI. [8), Landry et al. [35). 
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Dispersion thresholds translate the plausible differences, due to over-estimating 
or under-estimating, which affect the evaluation of a consequence or of a perfor
mance level. They allow us to include in our reasoning not only a probable value but 
also an optimistic or pessimistic value. 

Discrimination thresholds are used specifically to model the fact that the 
difference between performance levels associated with two actions may be (relative 
to the criterion considered and all other things being equal): 

- probative of a preference in favor of one of the actions (preference threshold); 
- compatible with indifference between the two actions (indifference threshold). 
These threshold may be constant along a scale or, to the contrary, variable. If 

the latter is true, we must make a distinction between direct and inverse thresholds. 

WEIGHT (of a criterion) 

See Importance. 
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Abstract: This chapter introduces the basic concepts of vector optimization. 
After the discussion of a simple example from structural engineering partial 
orderings on Rm are defined and connections to convex cones are investigated. 
Then we present the definitions of several variants of the efficiency notion: weak, 
proper, strong and essential efficiency. Relationships between these different 
concepts are investigated and simple examples illustrate these notions The last 
section is devoted to the scalarization of vector optimization problems. Based 
on various concepts of monotonicity basic scalarization results are described 
and the weighted sum approach is investigated in detail. 
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2.1 BASIC NOTIONS 

Optimization problems with several criteria arise in economics, engineering, 
applied mathematics and physics. As a simple example we discuss a design 
problem from structural engineering. 

Example 2.1: We consider the design of a beam with a rectangular cross
section and a given length l (see Fig. 2.1 and 2.2). The height Xl and the width 
X2 have to be determined. 

Figure 2.1: Longitudinal section. Figure 2.2: Cross-section. 

The design variables Xl and X2 have to be chosen in an area which makes sense 
in practice. A certain stress condition must be satisfied, i.e. the arising stresses 
cannot exceed a feasible stress. This leads to the inequality 

Moreover, a certain stability of the beam must be guaranteed. In order to avoid 
a beam which is too slim we require 

and 
X2 ~ Xl· 

Finally, the design variables should be nonnegative which means 

Among all feasible values for Xl and X2 we are interested in those which lead 
to a light and cheap construction. Instead of the weight we can also take the 
volume of the beam given as lXlX2 as a possible criterion (where we assume 
that the material is homogeneous). As a measure for the costs we take the 
sectional area of a trunk from which a beam of the height Xl and the width X2 

can just be cut out. For simplicity this trunk is assumed to be a cylinder. The 
sectional area is given by Hx~ + x~) (see Fig. 2.3). 
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Figure 2.3: Sectional area. 

Hence, we obtain a vector optimization problem of the following form: 

subject to the constraints 

2000 - X~X2 ~ 0 

Xl - 4X2 < 0 

-Xl +X2 < 0 

-Xl < 0 

-X2 < O. 

• 
In this chapter we investigate vector optimization problems in finite dimen

sional spaces of the general form 

(2.1) "max "f(x) 
xES 

Here we assume that S is a nonempty subset of lR.n (n E N) and f : S -+ lR.m 

(m E N) is a given vector function. In the case of m = 1 this problem reduces 
to a standard optimization problem with a scalar-valued function f. 

Since f is a vector-valued function one speaks of a so-called vector optimiza
tion problem or a multi-objective optimization problem. The set S is called 
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constraint set and the vector function f is called objective function. Actu
ally it does not matter whether we investigate maximization or minimization 
problems. In this chapter we consider only vector maximization problems. 

Maximization of a real-valued function f means that we look for the max
imum value of all function values f(x) with xES. In the vector-valued case 
we have to clarify in which sense we maximize among vectors f(x) E ]Rm with 
xES (see Fig. 2.4). The important question of how to order vectors in ]Rm is 
investigated in the next section. 

Y2 

f 

Figure 2.4: Preimage and image set of f. 

2.2 ORDER RELATIONS 

The mathematical theory of partially ordered sets provides the fundamental 
tool for the question of how to order vectors in ]Rm. A partial ordering in ]Rm 

is defined as follows (e.g., see [12], [13]). 

Definition 2.1: 
(a) Every nonempty subset R of the product space ]Rm x]Rm is called a binary 

relation Ron ]Rm (one writes xRy for (x, y) E R). 

(b) Every binary relation ~ on ]Rm is called a partial ordering on ]Rm, if for 
arbitrary w, x, y, z E ]Rm: 

(i) x ~ x 
(ii) x ~ y, y ~ z => x ~ z 

(iii) x ~ y, w ~ z => x+w ~ y+z 
(iv) x ~ y, a E Rt => ax ~ ay 

multiplication) . 

(reflexi vi ty ) ; 

(transitivity) ; 

(compatibility with the addition); 

(compatibility with the scalar 
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(c) A partial ordering:S on ~m is called antisymmetric, iff or arbitrary x, y E 
~m: 

x :S y, y:S x =} x = y. 

In the case that we equip the vector space ~m with a partial ordering we speak 
of a partially ordered vector space. 

Example 2.2: If one defines the componentwise partial ordering :Sm on ~m 
by 

:Sm:= {(x,y) E ~m x ~m I Xi:S Yi for all i E {1, ... ,m}}, 

then the vector space ~m becomes a partially ordered vector space. • 

Notice that two arbitrary elements of a partially ordered vector space may 
not always be compared with each other with respect to the partial ordering. 
For instance, the vector (1,2) is neither larger nor smaller than the vector (2,1) 
with respect to the partial ordering given in Example 2.2. 

The following definition shows that it is also possible to introduce a complete 
ordering on ~m allowing to compare arbitrary vectors. 

Definition 2.2: A vector x E ~m is called lexicographically greater than a 
vector y E ~m, if x =I y and the first component of x - y being nonzero is 
positive. 

It is obvious that for arbitrary vectors x, y E ~m the following statement 
holds: Either x = y or x is lexicographically greater than y or y is lexicograph
ically greater than x. For instance, the vector (2,1) is lexicographically greater 
than (1,2). 

Since we have a partial ordering on the vector space ~m , it is not necessary 
to work with the algebraic structure in Definition 2.1 but we can use convex 
cones characterizing a partial ordering. 

Definition 2.3: Let C be a nonempty subset of ~m . 

(a) The set C is called a cone if 

xE C, A~O =} AxEC 

(see Fig. 2.5). 

(b) A cone C is called pointed if 

x EC, -xEC =} xbDR'" 

(see Fig. 2.6). 
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Figure 2.5: Cone. 

Example 2.3: The set 

Figure 2.6: Pointed cone. 

1R~:={xElRm I Xi~O foralliE{I, ... ,n}} 

is a pointed cone. 

Recall that a set T C IRm is called convex if for every x, yET 

AX + (1 - A)y E T for all A E [0,1] 

(see Fig. 2.7 and 2.8). 

x 

Figure 2.7: Convex set. Figure 2.8: Non-convex set. 

If T is a cone, then convexity is simply characterized. 

Theorem 2.1: A cone C c IRm is convex if and only if 

(2.2) x + Y E C for all x, y E C. 

• 
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Proof: 

(a) Let C be a convex cone. Then it follows for all x, y E C 

1 1 1 
-(x+y)=-x+-yEC 
2 2 2 

which implies x + y E C. 

(b) For arbitrary x, y E C and A E [0, 1] we have AX E C and (1 - A)y E C. 
Then we get with the condition (2.2) 

AX + (1 - A)y E C. 

Consequently, the cone C is convex. 

• 
We now come to a central relationship between a partial ordering and a 

convex cone. 

Theorem 2.2: 

( a) If ~ is a partial ordering on ~m, then the set 

C := {x E]Rm I OR'" ~ x} 

is a convex cone. If, in addition, the partial ordering is antisymmetric, 
then C is pointed. 

(b) If C is convex cone in ]Rm, then the binary relation 

~:= {(x,y) E ]Rm x ~m I y - X E C} 

is a partial ordering on ~m. If, in addition, C is pointed, then the partial 
ordering ~ is antisymmetric. 

Proof: 

(a) Since the partial ordering ~ is compatible with the scalar multiplication, 
it is evident that C is a cone. Now, take arbitrary x, y E C. Then DR ... ~ X 

and DR", ~ y, and with property (iii) in Definition 2.1, (b) we obtain 
OR'" ~ x + y which means x + y E C. By Theorem 2.1 we conclude that 
C is convex. Next, assume that x E C and -x E C implying DR ... ~ x 
and x ~ DR",. Then by the antisymmetry of ~ we get x = OR"" Hence, 
C is pointed in this case. 
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(b) Since OR'" is always contained in a cone, the binary relation::; is reflexive. 
For x ::; y and y ::; z (x,y,z E ~m) we have y - x E C and z - y E C. 
The convexity of C then implies z - x E C or x ::; z. This shows the 
transitivity of::;. For arbitrary x, y, W, z E ~m with x ::; y and W ::; z we 
have y - x E C and z - w E C and because of the convexity we conclude 
(y + z) - (x + w) E C, i.e. x + w ::; y + z. So, the binary relation::; is 
compatible with the addition. For the proof of the compatibility with the 
scalar multiplication take arbitrary x, y E ~m and a E 114 with x ::; y. 
Then y - x E C, and because C is a cone we conclude ay - ax E C 
or ax ::; ay. Finally, assume that the cone C is pointed and take any 
x, y E ~m with x ::; y and y ::; x. Then y - x E C and - (y - x) E C 
implying y - x = ORm or x = y. Consequently, the partial ordering::; is 
antisymmetric. 

• 
Definition 2.4: A convex cone characterizing the partial ordering on ~m is 
called an ordering cone (or also a positive cone). 

Example 2.4: 
(a) For the componentwise partial ordering given in Example 2.2 the ordering 

cone is given in Example 2.3. 

(b) The ordering cone 

C:= {x E ~2 I Xl ~ 0 and X2 = O} 

induces the partial ordering ::;0 with 

• 
In the following we denote the partial ordering induced by a given ordering 

cone C c ~m by::;o. And we assume that the ordering cone is pointed implying 
that the induced partial ordering ::;0 is antisymmetric. 

2.3 VARIOUS CONCEPTS OF SOLUTIONS IN VECTOR 
MAXIMIZATION 

We come back to the vector optimization problem (2.1) with 0 i S c ~n and 
f : S -+ ~m. Now we assume that the vector space ~m is partially ordered 
by a binary relation ::;0 induced by a pointed ordering cone C. This is the 
standard assumption for this section. 

Definition 2.5: Let T be an arbitrary nonempty subset of ~m . 
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(a) fj E T is called a maximal element of T, if there is no yET with Y i:- fj 
and fj :::;c Y (see Fig. 2.9). 

(b) fj E T is called a minimal element of T, if there is no yET with y i:- fj 
and y :::;c fj (see Fig. 2.9). 

{y E ]R2 I y :::; fj} 

fj is a minimal 
element ofT 

y is a maximal 
element of T 

° Yl 

Figure 2.9: Maximal and minimal elements of T with respect to C := ]R~. 

ExaIllple 2.5: We consider the unit circle in ]R2 

and we assume that C := ]R~. The set of all maximal elements of T is given as 

{ (Yl, Y2) E]R2 I Yl E [0, 1] and Y2 = )1 - yr } , 
and the set of all minimal elements of Treads 

{(Yl,Y2) E]R2 I Yl E [-1,0] and Y2 = -)1- yr} 
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minimal elements 
ofT 

1 
maximal elements 
ofT 

1 YI 

Figure 2.10: Maximal and minimal elements of the unit circle. 

(see Fig. 2.10). • 

In practice the maximal elements of T := I(S) do not play the central role 
but their preimages. 

Definition 2.6: xES is called an efficient solution (or an Edgeworth-Pareto 
optimal point or a maximal solution or a non dominated point) of problem (2.1), 
if I(x) is a maximal element of the image set I(S). 

The notion of efficient solutions is often used in economics whereas the no
tion "Edgeworth-Pareto optimal" can be found in engineering, and in applied 
mathematics one speaks of maximal solutions. The efficiency concept has been 
introduced by Koopmans [15]. 

Example 2.6: Consider the constraint set 

S:={(XI,X2)E]R2 I Xi-X2:::;O, XI+2x2-3:::;O} 

and the vector function 1 : S -t ]R2 with 

I(XI,X2) = ( Xl 2) forall (XI,X2)ES. 
-Xl - x 2 

Assume that C : = ]R~. The point (-!, - ~~) is the only minimal element of 
T := I(S), and the set of all maximal elements of Treads 

{(YI,Y2) E]R2 I YI E [-~-v2, 1] and Y2 = YI - yt}. 
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The set of all efficient solutions is given as 

{(XI,X2) E]R2 I Xl E [-~~,1] and X2 =xi} 

(see Fig. 2.11). • 

-2 -1 

3 

o 1 
efficient 
solutions 

minimal 
element of 

T 

1 

-4 

Figure 2.11: Maximal and minimal elements of T. 

YI 

maximal 
elements of 
T 

The efficiency concept is the main optimality notion used in vector optimiza
tion. But there are also other concepts being more weakly or more strongly 
formulated. First we present a weaker optimality notion. 

Definition 2.7: Let the pointed ordering cone C have a nonempty interior 
int(C). xES is called a weakly efficient solution (or a weakly Edgeworth
Pareto optimal point or a weakly maximal solution) of problem (2.1), if there 
is no xES with 

f(x) - f(x) E int(C). 
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This weak efficiency notion is often only used if it is difficult to characterize 
theoretically efficient solutions or to determine them numerically. In general, 
in the applications one is not interested in weakly efficient solutions; this opti
mality notion is only of mathematical interest. 

Example 2.7: We consider the vector optimization problem (2.1) with the 
set 

8 := { (Xl, X2) E]R2 I 0 ~ Xl ~ 1, 0 ~ X2 ~ 1 }, 

the identity 1 : 8 -+ ]R2 with 

and we assume C := ~. 8 describes a square in ]R2. Since 1 is the identity, the 
image set 1(8) equals 8. The point (1,1) is the only efficient solution whereas 
the set 

{(XI,X2)E8 I xI=l or X2=1} 

is the set of all weakly efficient solutions (see Fig. 2.12). 

1+------.... 

s 

o 

Figure 2.12: Weakly efficient solutions. 

• 

In the preceding example the set of efficient solutions is contained in the 
set of weakly efficient solutions. This fact holds in general (in the case of 
int(C) :f 0) and is proved in the next theorem. 

Theorem 2.3: Let the pointed ordering cone C have a nonempty interior. 
Every efficient solution of problem (2.1) is a weakly efficient solution of problem 
(2.1). 
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Proof: If xES is an efficient solution of problem (2.1), then there is no xES 
with f(x) ~ f(x) and 

f(x) :Sc f(x), 

or equivalently 
f(x) - f(x) E C. 

Consequently, there is also no xES with 

f(x) - f(x) E int(C). 

This means that xES is a weakly efficient solution. • 
Notice that the converse statement of Theorem 2.3 is not true in general 

(compare Example 2.7). 
In the following we present a sharper optimality notion. It is the concept 

of properly efficient solutions introduced by Geoffrion [9] (but already earlier 
used by Kuhn and Tucker [16]). 

Definition 2.8: Let C := jR+ be given. xES is called a properly efficient 
solution (or a properly Edgeworth-Pareto optimal point or a properly maximal 
solution) of problem (2.1), if x is an efficient solution and there is a real number 
p> 0 so that for every i E {1, ... ,m} and every xES with hex) > hex) at 
least one j E {1, ... , m} exists with hex) < hex) and 

fi(X) -hex) < 
hex) -hex) - p. 

An efficient solution which is not properly efficient is also called an improperly 
efficient solution. 

In the applications improperly efficient solutions are not desired because 
a possible improvement of one component leads to a drastic deterioration of 
another component. 

Example 2.8: For simplicity we investigate the vector optimization problem 
(2.1) with the unit circle 

S:={(Xl,X2)E1R? I xi+x~:S1}, 

the identity f : S -+ jR2 with 

f(Xl,X2) = (Xl,X2) for all (Xl,X2) E S 

and C := ~. By Example 2.5 the set of efficient solutions reads 

{(Xl ,X2) E jR2 I Xl E [0,1] and X2 = J1- xi} 
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(see Fig. 2.10). Except the points (0,1) and (1,0) all other efficient solutions 
are also properly efficient solutions. In the following we show that the point 
x := (0,1) is an improperly efficient solution. For an arbitrary n E N consider 

the point x(n) := (~J2n - 1,1 - ~) of the unit circle. For every n E N we 

have h{x(n)) > h(x) and h{x(n)) < h(x), and we conclude 

h(x) - h{x(n)) = Xl - xI(n) = ° -~~ = J2n -1 
h{x(n)) - h(x) x2(n) - X2 1- n-1 

for all n E N. 

It is obvious that an upper bound J.L > ° of this term does not exist. Conse
quently, X = (0,1) is an improperly efficient solution. -

Exalllple 2.9: It can be shown that one properly efficient solution of the 
design problem discussed in Example 2.1 is, for instance, the point (10~, 5~). 
This solution leads to a beam with the height 1O~ ~ 15.874 and the width 
5~ ~ 7.937. -

Until now there are more than a dozen variants of this proper efficiency con
cept (for instance, see [18]). Since Geoffrion's definition is based on the natural 
partial ordering in m,m, extensions of this notion to more general partially or
dered vector spaces are formally different from the original concept. Hartley 
[10] has formulated an extension of this concept to Hilbert spaces. Various gen
eralizations use the tangential approximation of the image set f(S) expressed 
by the contingent cone (see [13, p. 84]) or similar approximations (we refer to 
the papers of Borwein [2,3], Vogel [19] and Benson [1]). Many generalizations 
define proper efficiency as efficiency with respect to a larger cone with suitable 
properties (we refer to the important contributions given by Wierzbicki [20-
22] and Henig [11]). The notion of super efficiency introduced by Zhuang [23] 
in normed spaces is a possible generalization of the proper efficiency concept 
as well. It combines the idea of enlarging the ordering cone with the idea of 
using tangential approximations. It is shown in [18] that many of these gener
alized proper efficiency concepts coincide with Geoffrion's notion in the finite 
dimensional case with C = lR+' and a convex image set f(S). For further inves
tigations of the proper efficiency conept we also refer to the book of Kaliszewski 
[14]. 

Next we come to a very strong optimality notion. 

Definition 2.9: XES is called a strongly efficient solution (or a strongly 
Edgeworth-Pareto optimal point or a strongly maximal solution) of problem 
(2.1) if 

f(x) :::;0 f(x) for all xES. 
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(see Fig. 2.10). Except the points (0,1) and (1,0) all other efficient solutions 
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This concept naturally generalizes the standard maximality notion used in 
scalar optimization. But it is clear that this concept is too strong for vector 
optimization problems. 

ExaIllple 2.10: Consider the vector optimization problem in Example 2.7. 
Here the point (1,1) is a strongly efficient solution. The problem discussed in 
Example 2.8 has no strongly efficient solutions. -

TheoreIll 2.4: Every strongly efficient solution is an efficient solution. 

Proof: Let xES be a strongly efficient solution, i.e. 

f(x) :Sc f(x) for all xES. 

Then there is no xES with f(x) i:- f(x) and f(x) :Sc f(x). Hence, x is an 
efficient solution. -

Finally, we come to an optimality concept proposed by Brucker [4] for dis
crete problems. 

Definition 2.10: xES is called an essentially efficient solution (or an 
essentially Edgeworth-Pareto optimal point or an essentially maximal solution) 
of problem (2.1), if f(x) is a maximal element of the convex hull of the image 
set f(S). 

Since the image set f(S) is contained in its convex hull it is evident that 
every essentially efficient solution xES is also an efficient solution. Morover, 
there is also a relationship to the strong efficiency concept. 

TheoreIll 2.5: Every strongly efficient solution is an essentially efficient so
lution. 

Proof: Let xES be a strongly efficient solution. Then we have 

f(x) :Sc f(x) for all xES 

or 
f(S) c {J(x)} - C 

("-" denotes the algebraic difference of sets). Since the set {J(x)} - C is 
convex, we conclude for the convex hull co(f(S)) of f(S) being the intersection 
of all convex subsets of ~m containing f(S) 

co(f(S)) c {J(x)} - C. 

Then there is no y E co(f(S)) with y i:- f(x) and f(x) :Sc y. Hence, f(x) 
is a maximal element of the set co(f(S)), i.e. xES is an essentially efficient 
solution. -
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Example 2.11: Consider the vector optimization problem (2.1) with the 
discrete constraint set 

S := ((0,3), (1,1), (3, On, 

the identity as objective function f and C := IR~ (see Fig. 2.13). 

3 

2 

1 • 

Figure 2.13: Constraint set S. 

Every feasible point is an efficient solution, but only the points (3,0) and 
(0,3) are essentially efficient solutions. -

Summarizing the relationships between the presented optimality concepts 
we obtain the diagram in Table 2.1. Notice that the converse implications are 
not true in general. 

strong efficiency 
.u. 

essential efficiency 
.u. 

c=lR+ int(C),i0 
proper efficiency =* efficiency ~ weak efficiency 

Table 2.1: Relationships between different solution concepts. 
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2.4 SCALARIZATION 

In general, scalarization means the replacement of a vector optimization prob
lem by a suitable scalar optimization problem which is an optimization prob
lem with a real-valued objective function. This principle makes it possible that 
solutions of a vector optimimization problem can be characterized and also 
computed by using these scalar problems. In economics these problems are 
also called auxiliary problems, auxiliary programs or compromise models (for 
instance, see [6, 8]). 

In this section we discuss appropriate scalar optimization problems which 
can be used for scalarization and we present the theoretical basics. These 
investigations enclose the efficiency and the weak and proper efficiency concept. 

2.4.1 General Results 

For the formulation of a general sufficient condition for efficient solutions of the 
vector optimization problem (2.1) we need appropriate monotonicity concepts. 
We use the same standard assumption as in Section 2.3. 

Definition 2.11: Let M be a nonempty subset of lRrn. 

(a) A function <p : M -+ lR is called monotonically increasing on M if 

x, Y E M and x :::;c y ==> <p(x):::; <p(y). 

(b) A function <p : M -+ lR is called strongly monotonically increasing on M 
if 

x, Y E M, x ¥ y and x :::;c y ==> <p(x) < <p(y). 

(c) Let C have a nonempty interior int(C). A function <p : M -+ lR is called 
strictly monotonically increasing on M if 

x, Y E M and y - x E int(C) ==> <p(x) < <p(y). 

It is evident in the case of int(C) ¥ 0 that every strongly monotonically 
increasing function is strictly monotonically increasing as well. 

Example 2.12: Let C = lR+ . 

(a) For arbitrary real numbers tI,"" trn 2': 0 let the function <p : lRrn -+ lR be 
defined by 

rn 
<P(YI, ... ,Yrn) = L tiYi for all (YI,"" Yrn) E lRrn . 

i=I 
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Then <p is monotonically increasing on IRm. In order to see this we fix 
arbitrary vectors x, Y E IRm with x SIR+, y. Because of tl, ... , tm 2: 0 and 

XiSYi for all iE{I, ... ,m} 

we conclude 
m m 

<p(x) = L tixi S L tiYi = <p(y). 
i=1 i=1 

m 

This completes the proof. Moreover, one can show for L ti > 0 that <p 
i=1 

is strictly monotonically increasing on IRm . 

(b) For arbitrary real numbers tl, ... , tm > 0 let the function t.p : IRm -+ IR be 
defined by 

m 

<P(YI, ... , Ym) = L tiYi for all (YI, ... , Ym) E IRm. 
i=1 

Then <p is strongly monotonically increasing on IRm. For the proof of this 
assertion we choose arbitrary vectors x, Y E IRm with x :I Y und x SIR+, y. 
Then we have 

tixi S tiYi for all i E {I, ... ,m} 

where for at least one i E {I, ... , m} this inequality is strict. Conse
quently, we get 

m m 

<p(x) = L tixi < L tiYi = t.p(y). 
i=1 i=1 

(c) In IRm norms can easily be given being strictly or strongly monotonically 
increasing on M : = IR+. Every weighted fp norm with p E [1, 00) is 
strongly monotonically increasing on IR+ (and, therefore, also strictly 
monotonically increasing on IR+). For the proof take for an arbitrary 
p E [1,00) the weighted fp norm II . lip with 

1 

IIYllp = (~WiIYiIP) P for all Y E IRm. 

Let the weights WI, ... , Wm be positive real numbers (see Fig. 2.14). For 
arbitrary vectors x, Y E IR+ with x :I Y and x SIR+, Y it follows 

o S xf S yf for all i E {I, ... , m} 
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where the right inequality is strict for at least one i E {I, ... , m}. Then 
we conclude 

Hence, the weighted Cp norm II . lip with p E [1,00) is strongly monotoni
cally increasing on ~+ . 
On the other hand the weighted maximum norm 11·1100 with 

lIylioo = max {wilYil} for all Y E ~m 
iE{l, ... ,m} 

(WI, ... , Wm > 0) is strictly monotonically increasing on ~+. For the 
proof take arbitrary vectors x, Y E ~+ with 

Xi < Yi for all i E {l, ... ,m}. 

Then we obtain 

Ilxlloo = max {Wdxil} < max {wiIYil} = Ilylloo. 
iE{I, ... ,m} iE{I, ... ,m} 

(d) Let the function <P : ~m --t ~ be defined by 

<p(YI, ... ,Ym)= max {Yi} for all (YI,···,Ym)E~m. 
iE{l, ... ,m} 

Then <P is strictly monotonically increasing on ~m. For the proof of this 
assertion choose arbitrary vectors X, Y E ~m with 

Xi<Yi for all iE{l, ... ,m}. 

Then it follows 

<p(x) = max {xd < max {Yd = <p(y). 
iE{I, ... ,m} iE{l, ... ,m} 

• 
The following theorem gives a basic scalarization result. 

Theorem 2.6: 

(a) Let <p : f(8) --t lR be a function being strongly monotonically increasing 
on f(8). If there is an x E 8 with 

(2.3) i.p (J(x)) ~ <p (J(x)) for all X E 8, 
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-1 

-1 

1 Xl 

p=l 
p=2 

Figure 2.14: Unit spheres of the fp norms with weights Wi = W2 = 1 in JR.2 . 

then x is an efficient solution of problem (2.1). 

(b) Let <p : I(S) -t JR. be a function being monotonically increasing on I(S). 
If there is an xES with 

(2.4) <p (f(x)) > <p (f(x)) for all xES with I(x) =i I(x), 

then x is an efficient solution of problem (2.1). 

(c) Let C have a nonempty interior int(C) , and let <p : I(S) -t JR. be a 
function being strictly monotonically increasing on I(S). If there is an 
xES with 
(2.5) <p (f(x)) ;::: <p (f(x)) for all xES, 

then x is a weakly efficient solution of problem (2.1). 

(d) Let C equalJR.+, and let tl,"" tm > 0 be given real numbers. If there is 
an xES with 

m m 

(2.6) Ltdi(X);::: Ltdi(X) for all XES, 
i=l i=l 

then x is a properly efficient solution of problem (2.1). 
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Proof: In the first two cases we assume that x is no efficient solution. Then 
there is an x E 8 with f(x) :::;c f(x) and f(x) :I f(x). In part (a) we obtain 
t.p(f(x)) < t.p(f(x)), a contradiction to the inequality (2.3). In part (b) it follows 
t.p(f(x)) :::; t.p(f(x)), a contradiction to the inequality (2.4). 

For the proof of part (c) we assume that x is no weakly efficient solution of 
problem (2.1). Then there is an x E 8 with 

f(x) - f(x) E int(C). 

Since t.p is strictly monotonically increasing on f(8), it follows 

t.p (f(x)) < t.p (f(x)), 

a contradiction to the inequality (2.5). 
We now prove the assertion in part (d). Since the function t.p : f(8) -+ IR. 

with 
m 

t.p(Yl, ... , Ym) = L tiYi for all Y E f (8) 
i=l 

is strongly monotonically increasing on f(8) (compare Example 2.12, (b)), by 
part (a) of this theorem x is an efficient solution of problem (2.1). Assume that 
x is no properly efficient solution. Then we choose 

J.L := (m - 1) .. max {tj} for m ~ 2, 
t,3E{1, ... ,m} ti 

and we obtain for some i E {1, ... , m} and some x E 8 with hex) > hex) 

hex) -hex) > 
() ) J.L for all jE{1, ... ,m} with /j(x) </j(x). 

/j x - fj(x 

This implies 

t· 
hex) -hex) > J.L (/j(x) - /j(x)) ~ (m - 1) t~ (/j(x) - /j(x)) 

for all j E {1, ... , m} \ {i}. 

Multiplication with n:~l and summation with respect to j :I i leads to 

m 

ti (h(x) -hex)) > L tj(/j(x) - /j(x)) 
;=1 
i¢i 
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and 
m 

o > ~tj(1i(x) -hex)) 
j=l 

implying 
m 

j=l 

contradicting to the inequality (2.6). 

m 

j=l 

• 
By Theorem 2.6, (a) - (c) efficient and weakly efficient solutions of problem 

(2.1) can be obtained as solutions of the scalar optimization problems 

max ('P 0 f)(x) = max 'P (I(x)) 
xES xES 

where in the case (b) the image uniqueness of the solution is additionally re
quired. By Theorem 2.6, (d) for arbitrary positive numbers tl, ... ,tm every 
solution of the scalar optimization problem 

is a properly efficient solution of problem (2.1). 

2.4.2 Weighted Sum Approach 

If one combines the assertions of Theorem 2.6, (b), (c) for C := IR+' with 
the remarks in Example 2.12, (a), (b) (i.e., 'P is chosen as a special linear 
function), then we obtain the scalarization results given in Table 2.2. The 
result in Theorem 2.6, (d) is also considered. This approach uses the weighted 
sum of the components of the objective vector function. Therefore, one speaks 
of a weighted sum approach (for instance, see [5, 6, 8)). 

Example 2.13: 

(a) In Example 2.6 we have already investigated the following vector opti
mization problem (see also Fig. 2.11): 

(2.7) ! 
"max" ( Xl 2) 

-Xl - x 2 
subject to the constraints 

xf - X2 ~ 0 
Xl + 2X2 - 3 ~ o. 
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and 
m 

o > ~tj(1i(x) -hex)) 
j=l 

implying 
m 

j=l 

contradicting to the inequality (2.6). 

m 

j=l 

• 
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xES xES 
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Every solution of the scalar optimization problem 

m 
max 2:)di(X) 
xES i=l 

with 

tl'···' tm > 0 tl, ... , tm ~ 0, h, ... ,tm ~ 0, 
ti > 0 for some ti > 0 for some 
iE{l, ... ,m}, i E {l, ... ,m}, 
where image 
uniqueness of the 
solution is given 

is 

a properly efficient an efficient solution a weakly efficient 
solution of problem of problem (2.1). solution of problem 
(2.1). (2.1). 

Table 2.2: Sufficient conditions for optimal solutions. 

For the computation of a properly efficient solution of this problem one 
can choose, for instance, tl = 1 and t2 = 2. Then one solves the scalar 
optimization problem 

(2.8) { 
max -Xl - 2x~ 

subject to the constraints 
xi - X2 ~ 0 

Xl + 2X2 - 3 ~ o. 

x (-~, t) is the unique solution of the problem (2.8). By Theorem 
2.6, (d) x is also a properly efficient solution of the vector optimization 
problem (2.7). 
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(b) The application of Theorem 2.6 to discrete problems allows a fast com
putation of efficient solutions. As a very simple example (see [7, p. 165]) 
all maximal elements of the discrete set 

S := ((16,9), (6,14), (11,13), (10, lOn C ]R2 

are determined. For this purpose we choose the vector function f : S -t 
]R2 with 

The maximal elements of S are exactly the efficient solutions of the prob
lem 

(2.9) "max" f(x). 
xES 

For the computation of these efficient solutions one can choose the weight 
vector t = (a,l - a) with a E (0,1) and obtains the scalar optimization 
problem 

max aX1 + (1- a)x2 
(Xl,X2)ES 

for arbitrary a E (0,1). The maximal elements of the set S are given in 
Table 2.3. 

a X aX1 + (1 - a)x2 

O<a<~ (6,14) 6a + 14(1- a) 

a- 1 (6,14) or (11,13) 38 
-6 3" 

l<a<i 6 9 (11,13) 11a + 13(1 - a) 

a- i (11,13) or (16,9) 109 
-9 """9 

~<a<l (16,9) 16a + 9(1- a) 

Table 2.3: Maximal elements and function values for different parameters (Example 2.13, 

(b». 

(c) The result of Theorem 2.6 can be well applied in linear vector optimiza
tion. As an example let us determine all efficient solutions of the following 
problem (see [5, pp. 155]): 
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"max" ( 4XI + 2X2 ) 
8XI + lOx 2 

subject to the constraints 
Xl + X2 ~ 70 

Xl + 2X2 ~ 100 
Xl ~ 60 
X2 ~ 40 

Xl, X2 ~ o. 
The constraint set of this example is illustrated in Fig. 2.15. Again, let 

30 

20 

10 constraint set 

o 10 20 30 40 50 

Figure 2.15: Constraint set in Example 2.13, (c). 

the vector t of the weights be given as 

t = ( 0: ) with 0: E (0, I). 
1-0: 

Consequently, one obtains for 0: E (0, I) the parametric optimization 
problem 

max (8 - 40:}XI + (10 - 80:}X2 

subject to the constraints 
Xl + X2 ~ 70 

Xl + 2X2 ~ 100 
Xl ~ 60 
X2 ~ 40 

XI,X2 ~ o. 
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All solutions of this problem are given in Table 2.4. These are also efficient 
solutions of the considered vector optimization problem. 

• 
a Xl X2 

O<a<~ 20 40 
2 20,\ + 40(1 - ,\) 40,\ + 30(1 - ,\) 5 

~<a<~ 
5 7 40 30 

6 40,\ + 60(1 - ,\) 30'\ + lO(l - ,\) ., 
~<a<l 60 10 

Table 2.4: Efficient solutions for different parameters (Example 2.13, (c)). ,\ E [0,1] can 
be arbitrarily chosen. 

Notice that for general nonlinear vector optimization problems not every 
efficient solution can be determined using the weighted sum approach. For 
instance, Figure 2.16 shows that only two maximal points of the set T can be 
determined in such a way. Only these two points are supporting points of an 
appropriate supporting function. 

maximal 
elements of 
T 

/ 

Figure 2.16: Weighted sum approach in the nonconvex case. 

The weighted sum approach seems to be only suitable for convex problems, 
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like linear problems. In general, this approach cannot be used for vector opti
mization problems arising in engineering. For these problems other approaches, 
for instance, like the weighted maximum norm approach, are more suitable. 
Next, we answer the question for which special problems the weighted sum 
approach is appropriate. 

Theorem 2.7: Let C = lR+ be given, and let the set 

1(8) -lR+ := {y E lRm I y ~lR+ f(x) for some x E 8} 

be convex. If x E 8 is a weakly efficient solution of problem (2.1), then there 
are real numbers h, ... , tm ~ 0, with ti > 0 for at least one i E {I, ... , m}, so 
that 

m m 

L. tdi(X) ~ L. tili(x) for all x E 8. 
i=l i=l 

Proof: Let x E 8 be a weakly efficient solution of problem (2.1), then there is 
no x E 8 with 

Ii ( x) > fi ( x) for all i E {I, ... , m}. 

If we define the sets 

A:= {y E lRm I Yi > Ii(x) for all i E {l, ... ,m}} 

and 
B := {y E lRm I y ~lR+ f(x) for some x E 8}, 

we conclude 
AnB = 0. 

It is evident that the set A is convex and open. By assumption the set B is 
convex as well. By the Eidelheit separation theorem (see [13, Thm. C.2]) there 
are real numbers h, ... ,tm, with ti f: 0 for at least one i E {l, ... ,m}, and a 
real number a so that 

m m 

(2.10) L. tiai > a ~ L. tibi 
i=l i=l 

If cl(A) denotes the closure of A, i.e. 

cl(A) = {y E lRm I Yi 2: fi(X) for all i E {I, ... , m}}, 
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m 

then fUt) E cl(A) n B, and one obtains by (2.10) a = L tdi(X). Then we 
i=1 

conclude 
m m 

i=l i=l 

or 
m 

L tizi ~ 0 for all Zl, ... ,Zm ~ O. 
i=1 

This implies that t1, ... , tm are nonnegative. Finally, we get from the right 
inequality in (2.10) 

m m 

i=1 i=l 

This completes the proof. • 
The preceding theorem can easily be extended to arbitrary ordering cones 

with nonempty interior. For cones with empty interior one has to apply a 
special separation theorem in ~m . 

In order to point out the importance of the weighted sum approach for 
convex vector optimization problems (i.e., for problems for which f(S) - ~+ is 
a convex set), we combine the results of Theorem 2.6, (c) (in connection with 
Example 2.12, (a)) and Theorem 2.7 in the following corollary. 

Corollary 2.1: Let C = ~+ be given, and let the set 

f(~) - ~~ := {y E ~m I y ~IR+ f(x) for some XES} 

be convex. Then xES is a weakly efficient solution of problem (2.1) if and 
only if there are real numbers tr, ... , tm ~ 0, with ti > 0 for at least one 
i E {1, ... , m}, so that 

m m 

L tdi(X) ~ L tdi(X) for all xES. 
i=l i=l 

Although the concept of weak efficiency is not suitable in applications (see 
Example 2.7), the preceding corollary shows that a theoretically elegant charac
terization is possible under convexity assumptions. The following corollary il
lustrates that the efficiency concept cannot be treated in a theoretically smooth 
way. 
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Corollary 2.2: Let C = IR+ be given. 

(a) Let tt, ... , tm > 0 be given real numbers. If there is an xES with 

m m 

L::>di(X) ~ L tdi(X) for all xES, 
i=1 i=1 

then x is an efficient solution of problem (2.1). 

(b) Let the set 

f(S) -IR+ := {y E IRm I y ::;lR+' f(x) for some XES} 

be convex. If xES is an efficient solution of problem (2.1), then there are 
real numbers t1, ... ,tm ~ 0, with ti > 0 for at least one i E {l, ... , m}, 
so that 

m m 

L tdi(X) ~ L tili(x) for all xES. 
i=1 i=1 

Proof: Part (a) of the assertion follows from Theorem 2.6, (a) in connection 
with Example 2.12, (b). Part (b) immediately follows from Theorem 2.7 in 
connection with Theorem 2.3. • 

In economics the result of Corollary 2.2 is also called efficiency theorem. 
Kuhn and Tucker [16] have already given a first formulation of this result (for 
instance, see also [5, pp. 160] and [17, pp. 57]). 

We now complete these weighted sum approaches with an investigation of 
the proper efficiency concept. 

Corollary 2.3: Let C = IR+ be given, and let the set 

f(S) -IR+ := {y E IRm I y ::;lR+' f(x) for some XES} 

be convex. Then xES is a properly efficient solution of problem (2.1) if and 
only if there are real numbers t1, ... ,tm > 0 so that 

m m 

L tili(x) ~ L tdi(X) for all xES. 
i=1 i=1 

Proof: One part of the assertion is shown in Theorem 2.6, (d). For the converse 
part see [9]. • 

The results concerning the weighted sum approach are summarized in Table 
2.5. The corresponding mathematical results can be found in the Corollaries 
2.1, 2.2 and 2.3. 
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If the set f(5) - lR+' is convex, then 
a solution of the scalar optimization problem 

m 
max Ltdi(X) 
xES 

i=l 

is 

a properly efficient an efficient solution a weakly efficient 
solution of problem of problem (2.1) solution of problem 
(2.1) (2.1) 

if and only if 

tl"'" tm > O. h,··· ,tm > 0 t l , ... , tm 2: 0, 
(suff. cond.). ti > 0 for some 

h, ... ,tm 2: 0, i E {I, .. . ,m}. 
ti > 0 for some 
iE{I, ... ,m}, 
(necess. cond.). 

Table 2.5: Necessary and sufficient conditions for optimal solutions. 

In economics vector optimization problems are very often linear, i.e. they 
are of the form 

(2.11) { 
"max" Cx 

subject to the constraints 
Ax::; b 
x E lRn 

where C and A are appropriate matrices (notice that JR.+' is the ordering cone) 
and b is a given vector (compare Example 2.13, (c». For these problems the 
set f(5) - JR.+' is always convex and, therefore, the results in Table 2.5 can be 
applied. Moreover, it can be shown that efficient solutions and properly efficient 
solutions coincide in this case. This is the result of the following theorem. 
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Theorem 2.8: Let the linear vector optimization problem (2.11) be given 
where C is a real (m,n) matrix, A is a real (k,n) matrix and b E]Rk is a given 
vector. Let the constraint set 

S:= {x E ]Rn I Ax ::::; b} 

be nonempty, and let ]R+ be the ordering cone. Then xES is an efficient 
solution of the linear vector optimization problem (2.11) if and only if xES is 
a properly efficient solution of problem (2.11). 

Proof: See Geoffrion [9, Theorem 2, p. 620]. • 
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solution of the linear vector optimization problem (2.11) if and only if xES is 
a properly efficient solution of problem (2.11). 

Proof: See Geoffrion [9, Theorem 2, p. 620]. • 
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However, there seems to be no unified approach to dualization in multi-objective 
optimization. One of the difficulties is in the fact that the efficient solution to 
multi-objective optimization is not necessarily unique, but in general becomes a 
set. The definition of infimum (or supremum) of a set with a partial order plays 
a key role in development of duality theory in multi-objective optimization. In 
this chapter, these notions will be considered from some geometric viewpoint. 
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3- 2 DUALITY IN MULTI-OBJECTIVE OPTIMIZATION 

3.1 REVIEW OF DUALITY IN SINGLE-OBJECTIVE PROGRAMMING 
AND RELATED PROPERTIES 

In order to get a better understanding, we shall begin with a brief review of 
duality and related properties in single objective optimization, in particular, 
stability and the theorem of the alternative. As is well known, duality in 
mathematical programming is based on the property that any closed convex 
set can be also represented by the intersection of closed half spaces including it. 
Let X' be a subset of an n-dimensional Euclidean space Rn and let f : X' --+ R 
and 9 : X' --+ Rm. Then for the following traditional scalar objective problem 

(SP) Minimize {f(x) I x E X' eRn, g{x) ~ O}, 

an associated dual problem is given by 

(SO) Maximize {4>(u) I u ~ 0, 4>{u) = inf{L{x,u)1 x E X'}}. 

Here the vector inequality ~ is, as usual, componentwise, and L{x, u) := f(x)+ 
uTg(x) is the usual Lagrangean with the multiplier u E R"'. 

Now, set 

and 

X = {x E X'I g(x) ~ O}, 

X{z) = {x E X'I g(x) ~ z}, 

w(z) = inf {f(x) I x E X', g(x) ~ z} 

epi w = {(z, y)1 y ~ w(z), X(z) i= 4>}. 
w(z) is called a perturbation function. The primal problem can be embedded 
in w(O). Under appropriate convexity conditions for f, g, and X', it is well 
known that the set epi w is convex. 

For simplicity of notation, we denote the set of optimal solutions in the 
objective space by 

inf(SP) := inf {f(x) I x E X' eRn, g(x) ~ O}. 

For the dual problem, the set sup{SO) can be defined similarly: 

sup(SO) := sup {4>(u) I u ~ O}. 

In cases in which there exists an optimal solution x* E X' which attains inf(SP), 
we use the notation min(SP) instead of inf(SP). Similarly, max (SO) is used if 
there exists an optimal solution to the dual problem. 

Definition 3.1 Duality between the problems (SP) and (SO) means that the 
property 

inf(SP) = sup(SO) (or, max(SO)). 

holds. 
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In order to show a geometric meaning of duality, we shall use the following 
notation: 

G = {(z, y)j y ~ f(x), z ~ g(x), x E X'} 

Ye {y E Rlj (O,y) E G, ° E Rm
}, 

Ycl e {y E Rlj (O,y) E cl G, ° E Rm} 

Here, 'cl' denotes the usual closure. Note that the primal problem (SP) is 
equivalent to finding inf Ye. On the other hand, the dual problem is equiv
alent to finding the maximal intercept of linear support for cl G with y-axis. 
Therefore, it is readily seen that the duality holds if and only if the following 
normality condition holds (Van Slyke and Wets [19]): 

Definition 3.2 (normality condition) The normality condition implies 

cl Ye = Ycl e· 

Remark 3.1 Let clcof denote the closed convex hull of function f on Rn 

defined by 

clcof(x) = sup{h(x)j h(z) ;::; f(z), Vz ERn, h is an affine function}. 

Then, the normality condition can be restated as 

w(O) = clco w(O). 

Remark 3.2 Let f* denote the conjugate function of f defined by 

f*(u) = sup {< X,u > -f(x)}. 
xERn 

where < x, u > denotes the usual inner product of x and u, i.e., uT x. Then 
it is known that f** = clco f holds (Rockafellar [17]). Therefore, the above 
normality condition is equivalent to 

w(O) = w**(O), 

which is known as the conjugate duality between (SP) and (SD). 

The above statements do not mention the existence of an optimal solution 
to the dual problem. Note that the existence of an optimal solution to the dual 
problem is assured if and only if the optimal value of the primal problem is 
finite and there exists a nonvertical supporting hyperplane for epiw. 

Definition 3.3 (stability) The problem (SP) is said to be stable if there 
exists a nonvertical supporting hyperplane for epi w at (0, w(O». 
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Remark 3.3 The problem (SP) is stable if and only if w(z) is subdifferentiable 
at z = O. 

Theorem 3.1 (Rockafellar [17]) 
inf(SP) = max(SD) holds if and only if inf(SP) is finite and (SP) is stable. 

Remark 3.4 When inf(SP) is finite, one of well known sufficient conditions 
for stability in convex programming is the Slater's constraint qualification, i.e., 

3xo E X' such that 9i(XO) < 0 (i = 1, ... , m). 

Now, we can consider the duality from another viewpoint. 

Definition 3.4 (the condition of the alternative) The condition of 
the alternative involving the pairs (f, X) and (</>, R'+) means that for any Q E 
(-00,00) exactly one of the following (I",) and (II",) holds: 

(I ) 3x E X sucht that f(x) < Q 

'" 
(II",) 3u E R'+ such that </>(u) ~ Q. 

Theorem 1.2 (MacLinden [10]) 
inf(SP)=max(SD) holds if and only if the condition of the alternative in

volving the pairs (f, X) and (</>, R'+) holds. 

3.2 DUALITY IN MULTI-OBJECTIVE OPTIMIZATION 

Many results in the following have been discussed in detail in the book by 
Sawaragi-Nakayama-Tanino [18], and hence will be described briefly without 
proofs here. New aspects for the duality theory, e.g., the relationship with 
the condition of the alternative, and relatively new results related with the 
duality for weak efficiency by Tanino [21] will be described in some detail in 
the subsequent sections. 

Let X be a set of alternatives in an n-dimensional Euclidean space Rn , and 
let f = (h,··· ,Jp) be a vector-valued objective function from Rn into RP. 
For two given vectors yl and y2 and a pointed cone K, the following notations 
for cone-order will be used: 

yl ~K y2 {:} y2 _ yl E K, 

yl 5.K y2 {:} y2 _ yl E K\{O}, 

yl <K y2 {:} y2 _ yl E int K. 

Furthermore, the K-minimal and the K-maximal solution set of Yare de
fined, respectively, by 

MinK Y := {y E YI no y E Y such that y 5.K y}, 
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MaxK Y := {y E YI no y E Y such that y '2:K y}. 

K-minimal solutions and K-maximal solutions are also called efficient. On the 
other hand, the weakly K -minimal and the weakly K -maximal solution set of 
Yare defined, respectively, by 

w-MinK Y := {y E YI no y E Y such that y <K y} 

w-MaxK Y := {y E YI no y E Y such that y >K y}. 

For any cone K in RP we denote the positive dual cone of K by KO, that is, 

KO := {p E RPI < p,q > ~ 0 for any q E K} 

where < p, q > denotes the usual inner product of p and q. A set Y is said to 
be K-convex if Y + K is convex [25]. In this chapter, a K-minimal solution y 
is said to be proper, if there exists /1 E int KO such that 

< /1, Y > ~ < /1, y > for all y E Y. 

Then, for a given cone order with a pointed closed cone D, a general type of 
multi-objective optimization problem may be formulated as follows: 

(P) Find MinD {f(x)1 x EX}, 

where f = (fI, ... ,fp) and 

X := {x E X'I g(x) ~Q 0, X' eRn}. 

Defining a dual problem (D) in some appropriate way associated with the 
problem (P), our aim is to show the property MinD (P) = MaxD (D). Here 
MinD(P) denotes the set of efficient points of the problem (P) in the objective 
function space RP, and similarly MaxD (D) the one of the dual problem (D). 

In contrast to the usual mathematical programming, the optimal value of the 
primal problem (and the dual problem) are not necessarily determined uniquely 
in multi-objective optimization. Hence, there have been developed several kinds 
of formulation of dual problem in order to get the desirable property MinD (P) 
= MaxD (D). Regarding Lagrange duality, three typical dualizations can be 
seen in linear cases, nonlinear cases and geometric approaches. 

3.2.1 Linear Cases 

The first result on duality for multi-objective optimization seems to be the 
one given by Gale et al. [3] for linear cases. This is formulated as a matrix 
optimization including the vector optimization as a special case. Although there 
have been several related works, the probably most attractive one is given by 
Isermann [5] because it is formulated as a natural extension of traditional linear 
programming: Let A be an m x n matrix, Cap x n matrix, and b an m-vector. 
Furthermore, let D, Q and M be pointed convex polyhedral cones in RP, Rm 
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and Rn, respectively. Then the primal problem (P) in linear cases is formulated 
as 

(Pr) Find MinD{Cxl x E X} 

where 

X = {x E Rnl Ax ~Q b, x ~M O}. 

Associated with (Pr), Isermann defined the dual problem as 

(Dr) Find MaxD{Ubl U E Uo} 

where 

Here, U is a set of p x m matrices U such that U QeD. Such matrices are 
said to be positive [16], [2]. 

Isermann duality is then given by 

(i) Ub ~D Cx for all feasble x and U. 

(ii) Suppose that Ub = Cx for some feasible x and some feasible U. Then 
U is an efficient solution to (Dr) and x is an efficient solution to (Pr). 

3.2.2 Nonlinear cases 

The probably first result on duality of nonlinear multi-objective optimization 
may be seen in Tanino-Sawaragi [22]. The result was obtained in parallel with 
the Lagrange duality of single-objective optimization. Unfortunately, how
ever, it is not complete in a sense that MinD(P)=MaxD(D) does not hold 
for (strong) efficiency. Later, in order to obtain the more desirable duality, 
MinD(P)=MaxD(D), several authors suggested other dualizations (e.g., Jahn 
[6] and Nakayama [12]). In their formulation, however, there appears explicitly 
no perturbation map, and hence no dual map. In order to develop duality 
theory in connection with these notions, we have to define the notion of "inf' 
and "sup"" in some appropriate way. This has been accomplished for the weak 
efficiency by Kawasaki [8] and Tanino [21], which will be discussed in some 
detail later in this chapter. Many results in the subsequent sections have been 
discussed in detail in the book by Sawaragi-Nakayama-Tanino [18], and hence 
they will be described briefly without proof. New aspects for the duality theory, 
e.g., the relationship with the condition of the alternative, and realtively new 
results related to the duality for weak efficiency by Tanino [21] will be described 
in some details there. 
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3.3 LAGRANGE DUALITY IN MULTI-OBJECTIVE OPTIMIZATION 

Restate our nonlinear multi-objective optimization problem under considera
tion: 

(P) Find MinD {f(x) I x EX}, 

where f = (J1, ... ,fp) and 

X := {x E X'I g(x) ~Q 0, X' eRn}. 

Initially, we impose the following assumptions: 

(i) X' is a nonempty compact convex set. 

(ii) D and Q are pointed closed convex cones with nonempty interior 
respectively of RP and Rm. 

(iii) f is continuous and D-convex. 

(iv) g is continuous and Q-convex. 

Under these assumptions, it can be readily shown that for every z E Rm, 
both sets X(z) := {x E X'I g(x) ~ z} and Y(z) =: J[X(z)] = {y E RPI y = 

f(x),x E X',g(x) ~ z} are compact and convex. 
The primal problem (P) can be embedded as (Po) in a family of perturbed 

problems (P z) given by 

Find MinD Y(z). 

Defining f = {z E Rml X(z) -=1= 0}, the set r is convex. Now in a similar 
fashion to the ordinary mathematical programming problem, the perturbed map 
can be defined by 

W(z) = MinD{f(x)I x E X',g(x) ~Q z}. 

It is known that for every z E f, W(z) + D is convex and 

W(z) + D = Y(z) + D. 

In addition, the map W is monotone and convex on f. 
A vector-valued Lagrangean function for the problem (P) is defined on 

X' xU by 
L(x, U) = f(x) + U g(x). 

The set-valued map <I> : U -> P(RP) defined by 

<I>(U) = MinD {L(x, U)I x E X'} 
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is called a dual map, where P(RP) denotes the power set of RP. Using this 
teminology, Tanino-Sawaragi [22] gave the following dualization of (P): 

(DTs) Find MaxD U ~(U). 
UEU 

It can be shown that ~ is a D-concave set-valued map on r, namely 

and ~(U) + D is a convex set in RP for each U E U. 
Tanino-Sawaragi introduced the following as a duality in multi-objective 

optimization (for details, see Tanino-Sawaragi [22] and Sawaragi-Nakayama
Tanino [18]): 

Proposition 3.1 

(i) For any x E X and y E ~(U) 

Y lD f(x). 

(ii) Suppose that x E X, (j E U and f(x) E ~((j). Then iJ = f(x) is an 
efficient point to the primal problem (P) and also to the dual problem 
(DTS). 

(iii) Suppose that x is a properly efficient solution to (P) and that Slater's 
constraint qualification is satisfied (Le.,3x E X such that g(x) <Q 0). 
Then 

f(x) E MaxD U ~(U) 
UEU 

Remark 3.5 In the sense that the equality 

(3.1) 

does not hold, the above dualization of vector optimization is not complete. 
In order to get MinD(P) = MaxD(DTs), several authors suggested other du
alizations for multi-objective optimization. Some of them took a geometric 
approach to this. Before proceeding to the geometric duality, we shall dis
cuss the condition of the alternative in multi-objective optimization in the next 
section. 
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3.4 CONDITION OF THE ALTERNATIVE IN MULTI-OBJECTIVE 
OPTIMIZATION 

For two given sets A c RP and B c RP, we define 

A+:= A+D, 

B-:= B-D. 

Throughout this section, we assume that A is closed. 

Definition 3.5 The condition of the alternative (CAl) for multi-objective 
optimization means that for any a E A + U B- exactly one of the following 
(Ia,) and (IIa,) holds: 

(Ia) 

(IIa) 

3 a E A such that a <5.D a, 

3 b E B such that b ~D a. 

Proposition 3.2 Suppose that MinD A =1= 0. Then, the condition of the 
alternative (CAl) for multi-objective optimization holds if and only if 

(3.2) MinD A c MaxD B. 

A proof of this theorem, which was originally given by Luc [9] follows im
mediately via the following lemma: 

Lemma 3.1 

(DI) 

(D2) 

(AI) 

(A2) 

Define the condition (DI), (D2), (AI) and (A2) as follows: 

Va E A, Vb E B, a f;.D b 

Va E MinD A, 3b E B, a;;;;'D b 
a E A+ U B-, (IIa) =} not (Ia) 

a E A+ U B-, not (Ia) =} (II*a) 

Then, (DI) is equivalent to (AI), and (D2) is equivalent to (A2). 

Proof (DI) =} (AI): From the condition (IIa), there exists some bE B such 
that b ~D a. Suppose to the contrary that the condition (Ia) holds, i.e., there 
exists some a E A such that a <5.D a. Then we have a <5.D b, which contradicts 
(DI). 
(AI) =} (DI): Putting a = b, the condition (Ih) holds. Therefore, for any 
bE B we have not (Ib) due to (AI), i.e., there exists no a E A such that 
a <5.D b, which is identical to (DI). 
(D2) =} (A2): The negation of (Ia) for any a E A+ U B- implies that for any 
a E A+ U B- there exists no a E A such that a <5.D a. It follows then from 
the definition of A+UB- that a E MinDA or a E B-. a E MinDA with (D2) 
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yields that there exists some b E B such that Q?:.D b, which is also obtained 
in case of Q E B- from the definition of B- . 
(A2) '* (D2): For any Q E MinDA, the condition (IoJ does not hold. Putting 
Q = a, it follows then from the condition of (A2) that there exists some b E B 
for any a E MinDA such that a?:.D b. • 

Remark 3.6 The condition (Dl) is well known as the weak duality. It is 
easy to see that we have a kind of strong duality (3.2) from (Dl) and (D2). 

In the above discussion, it has been observed that we have to modify the 
condition of alternative (CAl) in order to get a more desirable strong duality 
MinDA = MaxDB. 

Definition 3.6 The condition of the alternative (CA2) for vector optimiza
tion means that for any Q E RP exactly one of (10) and (IIo) holds. 

The following lemma is crucial for understanding a geometric relationship 
between the condition of alternative (CA2) and the duality of multi-objective 
optimization: 

Lemma 3.2 Denoting the weakly D-minimal solution set of A+ by w
MinDA+ and setting S(A+) = w-MinDA+\MinDA+, then under the condition 
of the alternative (CA2), the following (i)-(iii) hold: 

(i) int A+ n int B- = 0 

(ii) A+ U B- = RP 

(iii) S(A+) n B- = 0 

Proof If (i) is false, then there exists a point Q E RP such that both (10) 
and (IIo) hold. Furthermore, if (ii) is false, then there exists a point Q E RP 
such that neither (10) nor (IIo) of the condition of alternatives (CA2) hold. 
Finally, if (iii) is false, there exists bE S(A+) n B-. Then, by setting Q = b, 
both (10) and (IIo) hold. • 

Remark 3.7 Even though (i)-(iii) of Lemma 3.2 hold, the condition of the 
alternative (CA2) does not necessarily hold. To see this, for example, let B- = 
(A+)C, where (A+)C represents the complement of A+. However, if MinDA C 

MaxDB, then (i)-(iii) of Lemma 3.2 is equivalent to (CA2) by Lemma 3.2 and 
the following lemma. 

Lemma 3.3 In cases in which MinDA c MaxDB, the conditions (i)-(iii) in 
Lemma 3.2 are also sufficient for the condition of the alternative (CA2). 
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Proof Note that (i)-(iii) implies B- n intA+ = 0. Therefore, if a belongs 
to intA+, then it is clear that there exists an a E A such that a <5oD a but no 
bE B such that b ~D a. In addition, if a E bd(A+), then either a E S(A+) or 
a E MinDA, where 'bd(A+)' denotes the boundary of A+. Here, we used the 
relation bd(cl(Y+))=w-MinDcl(Y+) for any set Y E RP as is seen in Lemma 
3.4 below. In the case in which a E S(A+), there exists no b E B such that 
b ~D a according to (iii), and it is clear that there is an a E A such that 
a <5oD a. On the other hand, in case in which a E MinDA, we have abE B 
such that b ~D a because MinDA c MaxDB, and no a E A such that a <5oD a 
by the definition of MinDA. This completes the proof. • 

The following lemma gives a basis of geometric property of weakly D-Minimal 
solution to a set Y. 

Lemma 3.4 For any set Y E RP with w-MinDcl(Y+) =f. 0, 

Similarly, if w-MaxDcl(Y-) =f. 0, 

Proof It is easy to show w-MinDcl(Y + D) c bd(cl(Y + D)). In order 
to prove the reverse inclusion, suppose that y E bd(Y + D) and that y if
w-MinDcl(Y +D). From the latter assumption, there exists a point y' E cl(Y + 
D) such that y E y' +intD. Since y' +intD is an open set included by cl(Y +D), 
y can never be a boundary point of Y + D, which leads to a contradiction. 

The last half of the lemma can be obtained similarly. • 

Proposition 3.3 Suppose that MinDA =f. 0. Then, MinDA = MaxDB holds 
under the condition of the alternative (CA2) for vector optimization. 

Proof MinDA CMaxDB follows in the same way as the proof of Propo-
sition 3.2. Next, we shall show MaxDB cMinDA. Suppose that b E MaxDB. 
From Lemma 3.2, we have bd(A+) = bd(B-), where bd (A+) denotes the 
boundary of A +. From Lemma 3.4, therefore, we have 

w-MinD A+ = W-MaxD B-. 

It follows then from (iii) of Lemma 3.2 that 

MinD A. 

This completes the proof. • 
Remark 3.8 Defining InfDA=MinDclA in cases in which A is not necessar
ily closed, the condition of the alternative (CA2) replacing A by clA implies 
InfDA=MaxDB. 
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In the following, we shall show the relationship between the condition of the 
alternative and the duality for weak efficiency. 

Definition 3.7 Hereafter in this section, int D =1= 0 is assumed. Define 

A++ .- A + intD, 

B-- .- B - intD. 

Then, the condition of the alternative (CA3) for multi-objective optimization 
means that for any 0: E RP exactly one of the following (I' a) and (II' a) holds: 

(I'a) :3 a E cl(A++) such that a ~D 0:, 

(II' a) :3 bE B-- such that b > D 0:, 

Proposition 3.4 Suppose that O+(clA++))n( -D) = {O}, where 0+ (cl(A++)) 
denotes the recession cone of cl(A++). Then, the condition of the alternative 
(CA3) holds if and only if the following (i) and (ii) hold: 

(i) 

(ii) 

B-- n cl(A++) = 0 

B-- U cl(A++) = RP 

Proof [only if part]: If (i) is false, there exists some 0: E B-- n cl(A++). 
Then, clearly both (1'a) and (II'a) hold. If (ii) is false, there exists some 
0: E RP such that 0: fj. B-- and 0: fj. cl(A++). When 0: fj. B--, suppose 
to the contrary that there exists some b E B-- such that b > D 0:. This 
implies that 0: E b - intD c B-- which leads to a contradiction. Hence 
(II'a) does not hold. On the other hand, when 0: fj. cl(A++), suppose that 
(0: - D) n cl(A++) =1= 0. Then, there exist some d E D and some k E cl(A++) 
such that 0: - d = k. This means that 0: = k + d E cl(A++) + D = cl(A++), 
which is a contradiction. Note here that the last equality follows from the 
assumption of O+(cl(A++)) n (-D) = {O} (see, for example, Corollary 9.1.1 of 
Rockafeller [17]). Therefore, (0: - D) n cl(A++) = 0, which implies that (1'a) 
does not hold. 

[if part]: If both (i) and (ii) hold, for any 0: E RP exactly either 0: E cl(A++) 
or 0: E B-- holds. If 0: E cl(A++) , then (1'a) holds clearly. Also, since 
0: fj. B--, it follows immediately from the proof of the only if part that (II' a) 
does not hold. On the other hand, if 0: E B--, clearly (II'a) holds. In addition, 
since 0: fj. cl(A++), it follows immediately from the proof of the only if part 
that (I' a) does not hold. This completes the proof. • 

Remark 3.9 Under the assumption that D is a pointed closed convex 
cone, the condition of O+(cl(A++)) n (-D) = {O} assures the existence of 
MinDcl(A++), and hence also w-MinDcl(A++) (See, for example, Sawaragi
Nakayama-Tanino [18]). 
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(0: - D) n cl(A++) =1= 0. Then, there exist some d E D and some k E cl(A++) 
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that (I' a) does not hold. This completes the proof. • 

Remark 3.9 Under the assumption that D is a pointed closed convex 
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Proposition 3.5 Suppose that w-MinDcl(A++) =I- 0. If the condition of the 
alternative (CA3) holds, then 

w-MinDcl(A++) = w-MaxDcl(B--). 

Proof As stated in Lemma 3.4, for any subset Y in RP, bd(Y + D) = 
w-MinDcl(Y + D) and bd(Y - D) = w-MaxDcl(Y - D). Note first that 

(3.2) (cl(A + DW = (cl(A + D))C - D. 

In fact, for an arbitrary subset Y of RP, Y = Y + D implies yc = yc - D. 
For, if y' E y c - D, there exist y rf- Y and d ED such that y' = y - d. Suppose 
to the contrary that y' E Y. Then, we have y = y' + dEY + D = Y, which 
leads to a contradiction. Hence, for a proof of the equation (3.2), it suffices to 
show that 

(3.3) cl(A + D) = cl(A + D) + D. 

To this end, suppose that if E cl(A + D) + D. Then, there exists y E cl(A + D) 
and d E D such that if = y + d. Further, y E cl(A + D) implies that there 
exist sequences {yi} in A and {di } in D such that yi + di converges to y. Now, 
observe that yi + di + d E A + D, because D is a convex cone. Finally, since 
if is a limit point of yi + di + y, we have that if E cl(A + D), from which (3.3) 
follows. 

Now, turn to the proof ofthe theorem. According to the above property, we 
have 

w-MinDcl(A + D) bd(cl(A + D)) = bd(cl(cl(A + D))C) 

bd(cl[cl(A + D))C - D]) 

w-MaxD[cl«cl(A + D))C - D)] 

w-MaxDcl(cl(A + D))c. 

Note that B-- = (cl(A++)Y, because (CA3) yields both (i) and (ii) in 
Proposition 3.4 hold. This leads to the conclusion of the proposition immedi
ately. • 

Remark 3.10 Note that cl(A++) = w-MinDcl(A++) U (w-MinDcl(A++) + 
intD) and two sets in the right-hand side are disjoint with each other. It follows 
then that the above Proposition is equivalent to the following Proposition 3.6 
which was originally given by Nieuwenhuis [14J. This proposition plays an 
important role in the conjugate duality for weak efficiency in multi-objective 
optimization as will be seen later. 

Proposition 3.6 Let w-MinDA =I- 0. Then 

RP = w-MinDcl(A++) U (w-MinDcl(A++))++ U (w-MinDcl(A++))--

and three sets in the right-hand side are disjoint with each other. 
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3.5 GEOMETRIC DUALITY IN CONVEX MULTI-OBJECTIVE 
OPTIMIZATION 

3.5.1 Geometric Duality 

In the preceeding section, it has been observed that we need another dualization 
from Tanino-Sawaragi [22] so that the condition of the alternative (CA2), or 
almost equivalently Lemma 3.2 may hold. 

A geometric approach to duality in multiobjective optimization has been 
given by Jahn [6] and Nakayama [12]. There, some devices for dualization were 
made in such a manner that the condition of the alternative (CA2) holds (note 
Proposition 3.3 and Lemma 3.2). We shall review them briefly without proof. 
For a more detailed discussion, refer to Sawaragi-Nakayama-Tanino [18] or their 
original papers. 

As in the previous section, the convexity assumption of f and 9 will be 
also imposed here, but X' is not necessarily compact. 

Define 

G:= {(z, y) E Rm x RPI y ~D f(x), z ~Q g(x), x E X'}, 

Yc:= {y E RPI (O,y) E G, ° E Rm
, y E RP}. 

We restate the primal problem as 

(P) Find MinD{f(x)1 x EX}, 

where 
X := {x E X'I g(x);fQ 0, X' eRn}. 

Associated with this primal problem, the dual problem formulated by 
Nakayama [12] is as follows: 

where 

Find MaxD U YS(U), 

UEU 

YS(U) := {y E RPI f(x) + Ug(x) $.D y, for all x E X'}. 

An alternative dual problem is given by Jahn [6]: 

Find MaxD 

where 

U 
I-' E intDO 

>. E QO 

YH-(>',I-') = {y E RPI < /-1,f(x) > + < A,g(X) > ~ < /-1,y >, Vx E X'}. 
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Proposition 3.7 Suppose that G is closed, and that there is at least a 
properly efficient solution to the primal problem. Then, under the condition of 
Slater's constraint qualification, 

u YH-(>',J-L) C U YS(U) c cl (Yc)c. 
UEU 

where (Yc)C denotes the complement of set Yc. 

Lemma 3.5 The following holds: 

MinD (P) = MinD Yc. 

Proposition 3.8 (i) For any feasible x in (P) and for any feasible y in (DN) 
or (DJ ), 

Y 'tD f(x). 

(ii) Assume that G is closed, that there exists at least one efficient solution to 
the primal problem, and that these solutions are all proper. Then, under the 
condition of Slater's constraint qualification, the following holds: 

In some cases, one might not assume that G is closed. In this situation, we 
can invoke some appropriate normality condition in order to derive the duality, 
which will be stated briefly here. For more details, see for example, Jahn [6], 
Borwein-Nieuwenhuis [1], and Sawaragi-Nakayama-Tanino [18]. 

Define 

AC(J-L) 

Yc 

{aJ (O,a) E G(fL) , ° E Rm,a E RI
}, 

{yJ (O,y) E G,O E Rm,y E Rm}. 

Definition 3.8 The primal problem (P) is said to be J-normal, if for every 
fL E intDO, 

cl(AC(J-L)) = Ad C(J-L)· 

The primal problem (P) is said to be J-stable, if it is J-normal and for an 
arbitrary fL E intDO the problem 

sup>'EQoinfxEx < fL, f(x) > + < A,g(X) > 

has at least one solution. 

On the other hand, Nieuwenhuis [14] suggested another normality condition: 
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Definition 3.9 The primal problem (P) is said to be N-normal, if 

cl Yc = Yc\ c· 

Lemma 3.6 Under the given condition of convexity of the problem, Slater's 
constraint qualification (::Ix, g(x) <Q 0) yields J-stability and N-normality. 

Theorem 3.3 Suppose that Yc is closed, MinD(P)# 0, and the D-minimal 
solutions to (P) are all proper. Then, if Slater's constraint qualification holds 

3.5.2 Duality of Multi-objective Linear Programming via Geometric Duality 

In linear cases, fortunately, it is readily seen that the set G is closed and that 
each efficient solution is proper. In addition, we have G = epi W if there exists 
no x E X such that (C - U A)x ~D 0, as will be seen later. Therefore, we can 
derive Isermann's duality in linear cases via the stated geometric duality. 

Lemma 3.7 There exists some J1- E intDO such that 

if and only if there exists no x E M such that 

(C - UA)x ~D o. 

Proof See Nakayama [13]. 

Proposition 3.9 For linear cases with b # 0, 

U {Ub} = U CI>(U) = 
UEUo UEUo 

Proof See Nakayama [13]. 

U 
p. E intDO 

A E QO 

• 

• 
Now we can obtain Isermann duality via Propositions 3.7, 3.8 and 3.9. 

Namely, 

Theorem 3.4 For b # 0, we have 
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3.5.3 Geometric Duality for Weak Efficiency 

As in the preceding sections, the convexity of f, g, X' is assumed here, but X' 
is not necessarily compact nor closed. Define 

YSI(U) = {y E RPI f(x) + U g(x) -/.D y, '<Ix E X'}. 

Then the following properties are known (Nakayama [12]). 

Proposition 3.10 Suppose that Ye is a nonempty D-bounded subset in 
RP. Then under the condition of N-normality, we have 

Note from Proposition 3.5 that 

w-MinD clYe w-MaxD cl ( U 
j.L E DO\{O} 

A E QO 

= w-MaxD cl (U YSI(U») • 
UEU 

This leads immediately to the following duality. 

Theorem 3.5 Suppose that Ye is a nonempty D-bounded subset in RP. 
Then under the condition of N-normality 

w-MinD (P) =w-MaxD (DTS)=w-MaxD (DN )=w-MaxD (D J). 

Remark 3.11 As can be readily seen, by defining w-InfDY for a set 
Y E RP essentially as w-MinDcl(Y++) and similarly w-SuPDY essentially 
as w-MaxDcl(Y--), we can have inf(P)=sup(DTS)=sup(DN)=sup(DJ ) under 
some appropriate stability condition (Tanino [21]). 
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3.6 CONJUGATE DUALITY IN MULTI-OBJECTIVE OPTIMIZATION 

3.6.1 Conjugate Map and Conjugate Duality 

In parallel to the Lagrange duality, Tanino-Sawaragi [23] developed the conju
gate duality corresponding to efficient solutions in vector optimization. Their 
defintion of conjugate map for a set-valued map is as follows: 

Definition 3.10 Let F be a set-valued map from Rn into RP. The point-
to-set map F* : RPxn -+ RP defined by 

F*(T) = MaxD U [Tx - F(x)] for T E RPxn 
xERn 

is called the conjugate map of F. The conjugate map of F* is called the 
biconjugate of F and given by 

F**(T) = MaxD U [Tx - F*(T)]. 
TERpxn 

For a vector-valued function f from Rn to RP U {+oo}, letting domf = {x E 

Rnl f(x) -I- +oo}, the conjugate map f* of f is defined by 

f*(T) = MaxD{Tx - f(x)1 x E dom!}. 

Here +00 is an imaginary point whose every component is +00. We identify 
the function f as the set-valued map that is equal to {f(x)} for x E domf and 
is empty otherwise. 

Definition 3.11 Let f be a function from Rn to RP U {+oo}. A p x n 
matrix T is called a subgradient of f at x E domf if 

f(x) 'iD f(x) + T(x - x) for any x ERn, 

in other words, if 

f(x) - Tx E MinD{f(x) - Tx E RPI x ERn} = MinD{f(x) - Txl x E dom!}. 

The set of all subgradients of f at x is called the subdifferential of f at x and is 
denoted by 8f(x). If 8f(x) is not empty, then f is said to be subdifferentiable 
at x. 

Similarly, a set-valued map F: Rn -+ RP is said to be subdifferentiable at 
x E Rn if there exists a p x n matrix T such that 

fJ - Tx E MinD U [F(x) - Tx]. 
xERn 

for every fJ E F(x). The set of all subgradients of F at (x; y) is called the 
subdifferential of F at (x; y) and is denoted by 8F(x; y). If 8F(x; y) is not 
empty for every y E F(x), then F is said to be subdifferentiable at x. 
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The following property is essential to the conjugate duality for set-valued 
map. 

Proposition 3.11 A set-valued map F : Rn ---> RP is sub differentiable at x 
if and only if F(x) c F**(x). 

Proof For if E F(x), it follows from the definition of subgradient of set
valued map that 8F(x; if) i- 0 if and only if there exists T E RPxn such that 

Tx - if E F*(T). 

Hence, if if E F**(x), then it is clear that 8F(x;if) i- 0. Conversely, suppose 
that 8F(x; if) i- 0, namely that if E Tx - F*(T) for some T. Hence, we have 
if 1, y for any y E T'X - F*(T') with any T'. Therefore, if E F**(x), as was to 
~~~. . 

Now embed the original problem (P) into a family of perturbed problems 

(Pz) Find MinD{ 1>(x,z)1 x ERn, Z E Rm} 

by considering the function 1>: Rn x Rrn ---> RP U { +oo} such that 

1>(x z) = {f(X) for x E.X(Z), 
, +00 otherwIse. 

where X(z) = {xl g(x) ~Q z, x E X' eRn}. Clearly, (P)=(Po). Let 1>* be 
the conjugate map of 1>, namely 

1>*(T, U) = MaxD{Tx + Uz -1>(x, z) E RPI x E Rrn , z E Rrn}. 

Now consider the dual problem (Dc) to (P) as follows: 

(Dc) Find MaxD U -1>*(0, U). 
UEU 

Let us consider now the perturbation map W(z): Rrn ---> RP defined by 

W(z) = MinD{1>(x,z) E RPI x E RP}. 

Clearly, 
MinD(P) = W(O). 

The following properties can be seen in Sawaragi-Nakayama-Tanino [18] 
which were originally given by Tanino-Sawaragi [23]. 

Lemm 3.8 For every U E U, 

W*(U) :::> 1>*(0, U). 

If every W(z) is externally stable, i.e., if {1>(x, z) E RPI x E Rn} c W(z) + D 
for any z E Rrn , then 

W*(U) = 1>*(0, U). 
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~~~. . 
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UEU 
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Lemma 3.9 

MaxD(Dc) = MaxD U [-W*(U)] = W**(O). 
UEU 

Definition 3.12 The multi-objective optimization problem (P) is said to 
be stable if the perturbation map W is subdifferentiable at O. 

In view of Proposition 3.11, the problem (P) is stable if and only if 

MinD(P) = W(O) c W**(O) = MaxD(Dc), 

which yields immediately the following duality property similar to the one in 
Lagrange duality of Tanino--Sawaragi: 

Proposition 3.12 (i) The problem (P) is stable if and only if, for each 
solution i; of (P), there exists a solution (; of the dual problem (Dc) such that 

1/>(i;,0) E -1/>* (0, U). 

(ii) Conversely, if i; E R n and (; E RPxm satisfy the above relationship, then 
i; is a solution of (P) and (; is a solution of (Dc). 

Note that the above duality is essentially identical to W(O) c W**(O). Un
fortunately, a more desirable relation W(O) = W**(O) has not yet been estab
lished by using the definition of conjugate map on the basis of strong efficiency. 
However, it can be easily shown that this stronger duality holds for the weak ef
ficiency just similarly to the Lagrange duality as stated in the previous section. 
This fact will be discussed in the following subsection. 

3.6.2 Conjugate Duality for Weak Efficiency 

In Lagrange Duality, we suggested to define the infimum of a set A in terms of 
ordering induced by a closed pointed cone D as follows: 

InfDA := MinD(clA) if A -I- 0 

As is discussed in Sawarai-Nakayama-Tanino [18], however, this definition 
is not adequate for definition of conjuate map for a vector-valued function f 
because f(O) (j. f**(0) in general. 

Example 3.1 (Sawaragi-Nakayama-Tanino [18]) 
Let 

for x E R. 

Then, for 
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*( ) {[ (1- t1)x ] } - f T = InfD -(1 + t2)X : x E R . 

It is readily seen that 

U( - j*(T)) 
T 

Hence, 

j**(0) = {[ +~], [+(;]} 
which does not contain 

f(O) = [ ~ ] . 

Now, we introduce another notion of infimum based on weak efficiency which 
is seen in Nieuwenhuis [14], Kawasaki [7],[8], and Tanino [21J. The following 
discussion is based on Tanino [20], [21J. 

In order to develop the conjugate duality, it is convenient to extend the space 
RP into It :=RP U {+oo} U { -00 }. Here, ±oo are imaginary points such that 
for any y E RP, -00 <D Y <D +00 and y + 00 = +00 and y - 00 = -00. 
Clearly, -(+00) = -00, and the sum +00 - 00 is not considered. 

Given a set Y c It, we define the set of all points above Y, A(Y), by 

-P , , 
A(Y) := {y E R I Y >D Y for some y E Y}. 

Similarly, the set of all points below Y, B(Y), by 

-P 
B(Y) := {y E R I Y <D y' for some y' E Y}. 

Note that B(Y) = 0 if and only if Y = 0 or Y = {-oo}. Also, B(+oo) 
RP U {-oo}. 

The definition of weakly maximal points of Y c It can be extended directly 
from the one in Section 3.2. Namely, a point if E RP is called a weakly D
maximal point of Y, if if E Y and there is no y' E Y such that if > D y'. The set 
of all weakly D-maximal points of Y is denoted by w-MaxDY. The definition 
of weakly D-minimal points of Y c RP is similar. 

The closure of B(Y) in RP is defined by 

{ 

{-oo} 
clB(Y) = RP 

cl[B(Y) n RPJ U {-oo} 

if B(Y) = 0 
if B(Y) = RP U {-oo} 
otherwise 

Here, the notation of "cl" on the right-hand side means the usual closure in 
RP. 
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Now, we define the set of weakly supremal points of the set Y with respect 
to the cone ordering ~D' w-SuPDY, as follows: 

w-SuPDY := w-MaxD clB(Y). 

It can be shown that a point fj E It is a weakly supremal point of Y c RP if 
and only if there is no y E Y such that fj <D Y and in addition y' <D fj implies 
the existence of some y E Y such that y' <D y. The closure of A(Y) and the 
weak D-infimum of Y c RP can be defined similarly. 

-P Note that w-MaxD0 = 0 and w-SuPD0 = {-oo}. Also, w-MaxDR = 
{+oo}. Furthermore, it follows that w-SuPDY = {-oo} if and only if B(Y) = 0. 
Also, w-SuPDY = {+oo} if and only if B(Y) = RP U {-oo}. 

The following lemma is an extension of Lemma 3.4. 

Lemma 3.10 
w-SuPDY = [clB(Y)]\B(Y). 

Proof When Y = 0 or Y = {-oo}, then B(Y) = 0. Therefore, [clB(Y)] 
\B(Y) = {-oo}. Clearly, w-MaxD{-OO} = {-oo}, which yields the property 
of the theorem. Next, when Y = RP or Y = {+oo}, we have B(Y) = RP U 
{-oo}. Hence, [clB(Y)]\B(Y) = {+oo}, from which we have the property of 
the theorem because w-MaxDRP = {+oo}. Thirdly, if Y is a nonempty subset 
of RP, then B(Y) = Y-- U {-oo}, where Y-- = Y - intD. In this case, 
clB(Y) = cl[B(Y) n RP] U {-oo}. Clearly, w-MaxDclB(Y)=w-MaxDcl[B(Y) n 
RP]U{ -00 })=w-MaxDcl[B(Y)nRP]. Furthermore, in this case, cl[B(Y)nRP] = 
cl(Y--) and B(Y)nRP = Y--. Since w-MaxDcl(Y--) = cl(Y--)\Y-- from 
Lemma 3.4, we have the property of the theorem. Lastly, other cases are some 
combination of the above. This completes the proof. • 

Lemma 3.11 
B(Y) = B(w-SuPDY). 

Proof Since w-MaxDclB(Y) C clB(Y), we have B(w-MaxDclB(Y)) C 

B(clB(Y)) = B(Y). Here, the last equality follows from Lemma 4.1 of Tanino 
[21]. Therefore, we have B(w-SuPDY) C B(Y) from the definition of w
SUPDY immediately. In the following, we shall prove B(Y) C B(W-SUPDY). 
If w-SuPDY = {+oo} or {-oo}, the relation is obvious. In the other case, 
-00 is contained in both sets. Let fj E B(Y) and fj ::j= -00. Then there exists 
y E RP n Y such that fj <D y. Take an arbitrary d E intD. Then there exists a 
positive number ao such that y + ad f/- clB(Y) for all a > ao, since otherwise 
clB(Y) :J RP. Thus we can define a finite nonnegative number a by 

a = sup{ a/ y + ad E clB(Y)}. 

Then it is clear that y + ad E w-SuPDY = w-MaxD[clB(Y)]. Since fi <D Y ~D 
Y + ad, we have finally B(Y) C B(W-SuPDY). This completes the proof. • 

Now we can prove the following property which is an extension of Proposition 
3.6: 
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Proposition 3.13 

and the above three sets in the right-hand side are disjoint. 

Proof It should be noted from Lemmas 3.10 and 3.11 that (w-SuPDY) U 
B(w-SuPDY) = clB(Y). Therefore, it suffices to show that y (j clB(Y) im
plies y E A( w-Sup D Y). When w-Sup D Y = {-oo} or {+oo}, the property 
of the theorem is obviously true. Therefore, we shall consider the remain
ing ordinary case. Since +00 E A(w-SuPDY) in this case, it suffices to show 
y E A(W-SuPDY) for y (j clB(Y) such that y =1= +00. Fix an arbitrary dE intD. 
Since Y n RP =1= 0 in this case, y - ad E B(Y) for sufficiently large a > O. Let 

a = inf{a > 01 y - ad E B(Y)} 

and y = y - ad. Showing that yEW-Sup D Y completes the proof. Since 
y E clB(Y) = (w-SuPDY) U B(Y), it suffices to show that '[j (j B(Y). If we 
suppose to the contrary that y E B(Y), then y - ad E B(Y) for some a smaller 
than a, which contradicts the definition of a. Therefore, '[j (j B(Y) as was to 
be proved. • 

Now we can define the conjugate map of a set-valued map from n-dimensional 
Euclidean space Rn to the extended p-dimensional Euclidean space If!. The re
sults below can be easily extended to a set-valued map from a linear topological 
space to an extended partially ordered linear topological space. 

Let T be a set of all p x n matrices, and let F be a set-valued map from Rn 
-p 

to R . 

Defintion 3.13 
-p 

A set-valued map from T to R defined by 

F*(T) = W-SUPD U [Tx - F(x)] for T E T. 
xERn 

is called the conjugate map of F. Moreover, a set-valued map F** from Rn to 
-p 
R defined by 

F**(x) = w-suPD U [Tx - F*(T)] for x ERn. 
TET 

is called the biconjugate map of F. When f is a vector-valued function, its 
conjugate map can be defined by identifying it with the set-valued map x ---t 

{f(x)}. 

Lemma 3.12 For any x E Rn and any T E T, 

[F(x) - Tx] n B( -F*(T)) = 0. 
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Proof Since F*(T) = W-SUPD UXERn [Tx - F(x)], it is clear from Lemma 
3.10 and Proposition 3.13 that [Tx-F(x)]nA(F*(T)) = 0, as was to be proved . 

• 
Corollary 3.1 If y E F(O) and y' E -F*(T), then y </D y'. 

Corollary 3.2 If Y E F(x) and y' E F**(x), then Y </D y'. In other words, 

F(x) c F**(x) U A(F**(x)). 

Now we define w-subgradients for a set-valued maps from Rn to It. 

Definition 3.14 Let x E Rn and F(x). An element T E T is said to be a 
w-subgradient of F at (x; iJ) if 

Tx - iJ E w-MaxD U [Tx - F(x)]. 
xERn 

The set of all w-subgradients of F at (x; iJ) is called the w-subdifferential of F 
at (x; iJ) and is denoted by a' F(x; iJ). When a' F(x; iJ) # 0 for ViJ E F(x), F is 
said to be w-subdifferentiable at x. 
Proposition 3.14 If F is w-subdifferentiable at x, then F(x) c F**(x). 
Moreover, if F(x) = infDF(x) in addition, then F(x) = F**(x). 

Proof It is readily shown in general (Tanino [21], Proposition 3.1) that 
for a point x ERn, a set-valued map G from Rn to RP defined by G(x) = 
F(x + x), V x ERn has the property that (i) G*(T) = F*(T) -TX "IT E T 
and (ii) G**(x) = F**(x + x) "Ix ERn. Therefore, it suffices to prove the 
case x = O. First let x E F(O). Since F is w-subdifferentiable at 0, there exists 
T E T such that iJ E -F*(T). Then, from Corollary 3.1, 

iJ E w-MinD U [-F*(T)] c w-SuPD U [-F*(T)] = F**(O). 
TET TET 

Thus we have proved that F(O) C F**(O). Next we assume that F(O) 
infDF(O) and take an arbitrary iJ E F**(O). From Proposition 3.13, 

It = F(O) U A(F(O)) U B(F(O)). 

In view of Corollary 3.2, iJ rf. A(F(O)). If we suppose that iJ E B(F(O)), 
there exists y' E F(O) such that Y < y'. Then there exists T' E T such 
that y' E -F*(T') since F is assumed to be subdifferentiable at O. However, 
this implies that iJ E B( -F*(T')) and hence contradicts the assumption iJ E 

F**(O) = sUPD UTET[-F*(T)]. Therefore, iJ E F(O) and we have proved that 
F**(x) c F(x). This completes the proof. • 

Now we can show the conjugate duality based on weak efficiency in vector 
optimization. The primal problem is 
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Find w-MinD{J(x)1 x E X} 

where X = {x E Rnl g(x) ~Q a}. Let ¢ be a function from Rn x R m into 
RP U { +oo} such that 

{ 
f( x) if x E X 

¢(x,z) = +00 otherwise. 

Then the perturbed problem is 

(P~) Find w-MinD{¢(x, z)1 x ERn}. 

Definition 3.15 -P The set-valued map W from R m to R defined by 

W(z) = w-InfD(P:) = w-InfD{¢(x, z)1 x ERn} 

is called the perturbation map for Problem (P'). 

Consider the conjugate map of ¢: 

Then 

¢*(T, U) = w-SuPD{Tx + Uz - ¢(x, z)1 x ERn, Z E Rm}. 

-¢*(O, U) = -w-SUPD{UZ - ¢(x, z)1 x ERn, Z E Rm} 

w-InfD{¢(x,z) - Uzi x ERn, Z E Rm}. 

The dual problem to (P') is given by 

(D~) Find w-MaxD{ -¢*(O, U)I U E U}, 

where U is a set of p x m matrices such that UQ c D. 
Since -¢*(O,·) is a set-valued map, the problem (D') is regarded as a problem 

of finding 

w-SuPD(D~) = w-SuPD U [-¢*(O, U)]. 
UEU 

Lemma 3.13 
W*(U) = ¢*(O, U). 

Proof 

W**(U) W-SUPD U [Uz - W(z)] 
zERrn 

W-SUPD U [Uz - w-InfD{¢(x, z)1 x ERn}] 
zERrn 

W-SUPD U [Uz+w-SUPD{-¢(x,z)1 x ERn}] 
zERrn 
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W-SUPD U [W-SUPD{UZ - ¢(X, z)1 X ERn}] 

W-SUPD U {Uz - ¢(x,z)1 X ERn} 

W-SUPD{UZ - ¢(x, z)1 X ERn, Z E Rm} 

¢*(O,U). 

This completes the proof. 

In view of the above Lemma 3.13, we can rewrite w-SuPD(D~) as 

w-SuPD(D~) = w-SuPD U [-W*(U)] = W**(O). 
UEU 

• 

Since w-InfD(D~) = W(O), the desirable duality property is identical with 
W(O) = W**(O). 

Definition 3.16 The problem (P') is said to be w-stable if the perturbation 
map W is w-subdifferentiable at O. 

Now, immediately from Proposition 3.14, we have the following duality prop
erty. 

Theorem 3.6 If the problem (P') is w-stable, then 

w-infD(P') = w-SuPD(D~). 

It should be noted that the convexity is essentially sufficient for (P') being 
w-stable, as will be seen in the following. 

Lemma 3.14 If the function ¢ : Rn x Rm ~ K is convex, then the pertur
bation map W is a convex set-valued map from Rm to R P

• 

Proof Let 

Y(z) = {¢(x,z)1 X ERn} C RP U {+oo} 

for each z E Rm. Then, from Lemma 3.10, 

W(z) = w-InfDY(z) = [clA(Y(z))J\A(Y(z)). 

yi E W(ui ) + D C A(W(zi)) 

A(Zy(zi)) 

C clA(y(zi)) for i = 1,2. 
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For each a such that 0 :::; a :::; 1, 

ayl + (1- a)y2 E aclA(y(zl)) + (1- a)clA(y(z2)) 

C cl{aA(y(zl)) + (1- a)A(Y(z2))}, 

where we put 0 . (+00) = O. Since ¢ is convex, it is readily shown that 

Therefore, 

ayl + (1 - a)y2 E clA(Y(az l + (1- a)z2)) 

W(az l + (1 - a)z2) U A(W(az l + (1 - a)z2)), 

which implies that 

Hence, epi W is a convex set in Rm x RP, which means W is a convex set-valued 
map. This completes the proof. • 

Corollary 3.3 If the function ¢ is convex and if 0 E int dom ¢(x, .) for 
some x, then the problem (p') is w-stable. 

Proof The perturbation map W is convex by Lemma 3.14. Hence, if 
W(O) = {-oo}, then W(z) = {-oo} for all z, which implies that W is w
subdifferentiable at O. On the other hand, since 0 E int dom ¢(x,·) for some 
x, W(z) =I- {+oo} for all z in some neighborhood of O. This follows in general 
because for any set Y C K, (i) w-SupvY = {-oo} if and only if B(Y) = 0, (ii) 
w-SupvY = {+oo} if and only if B(Y) = RPU{-oo}, and (iii) w-SupvY C RP 
except for the cases of (i) and (ii). In general, if a set-valued map F from Rn 
to RP U {+oo} is convex, if x E int dom F, and if F(x) c w-InfvF(x), then 
F is w-subdifferentiable at x (Tanino [21], Proposition 4.3). This property and 
W(O) = w-InfvW(O) yields the conclusion of the corollary. • 

Remark 3.12 If the problem (p') is convex and if Slater's constraint 
qualification holds, then (p') is w-stable. 

3.7 CONCLUSION 

Many results in this chapter are due to Jahn [6], Nakayama [12], Nieuwen
huis [14], Tanino-Sawaragi [22], [23], and Tanino [20], [21]. Some of them were 
already discussed in detail in Sawaragi-Nakayama-Tanino [18]. This chapter 
is devoted with as much a unified approach to duality in multi-objective op
timization as possible. Although there are several other kinds of duality in 
multi-objective optimization, e.g., Fenchel's duality by Gros [4] and Mond
Weir type of duality by Mond-Weir [11] are not described here due to the page 
limitation. 
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Depending on the particular paradigm adopted for preference modelling, different 
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structure is discussed, followed by the introduction of the ideas of "incomparability" and 
"hesitation". Finally, we present some complementary questioning procedures particularly 
relevant for cardinal modelling of value judgements. 
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4-2 PREFERENCE RELATIONS AND MCDM 

4.1 INTRODUCTION 

Multicriteria decision aid is above all a human activity in which value judgements of 
involved actors playa crucial role. Therefore, "how to represent such judgements?" 
is a key question in MCDM 

Let us first note that the representation of value judgements is part of the more 
general problem of the representation of judgements of a person J about the degree 
to which the elements of a set X possess a certain property f.J. (For instance, X 
could be a set of cars and f.J their comfort, or X could be a set of offences and f.J the 
seriousness of these offences, etc.) In the multicriteria decision aid framework: 

./ X can be a set of actions (real or fictitious) and f.J the (partial) attractiveness 
of the actions in regard of a particular point of view . 

./ X can be a set of actions (real or fictitious) and f.J the (overall) attractiveness 
of the actions in regard of several points of view simultaneously . 

./ X can be a set of sentences (for example: "action a is at least as attractive as 
action b in regard of a particular point of view") and f.J the credibility of 
such sentences. 
etc. 

Mathematically, the notion of a binary relation plays a fundamental role in the 
representation of value judgements. Section 4.2 offers a general overview of binary 
relations, which constitutes the basic background for the next sections. In order to 
represent value judgements, a first step consists in assessing them. The questioning 
procedure used for this purpose plays a fundamental role. Indeed, depending on the 
particular paradigm adopted for preference modelling, different questioning 
procedures can be conceived which lead to different preference structures. Sections 
4.3 to 4.5 are devoted to the presentation of a few questioning procedures related to 
three basic paradigms, together with some preference structures that are useful for 
MCDM. The classical preference-indifference structure is discussed in section 4.3, 
in section 4.4 the notion of "incomparability" is introduced, and the idea of 
"hesitation" is addressed in section 4.5. Finally, we present some complementary 
questioning procedures particularly relevant for cardinal modelling of value 
judgements. 

4.2 RELEVANT BACKGROUND ON BINARY RELATIONS 

4.2.1 Notion of a binary relation 

A binary relation defined on a set X is a subset of the cartesian product Xxx, that is, 
a set of ordered pairs (x, y) such that x and y are in X In other words, R is a binary 
relation on X if and only if (iff) R s;; XxX = {(x, y) I x E X and y E X}. We use 
either (x, y) E R or xRy to denote that the pair (x, y) belongs to the binary relation 
R We use either (x, y) ~ R or xRy to denote that (x, y) does not belong to R 

If Rand T are two binary relations on X, RuT [resp. RnT] denotes the union 
[resp. the intersection] of the two subsets Rand T of XxX. We have, therefore: 
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./ X can be a set of sentences (for example: "action a is at least as attractive as 
action b in regard of a particular point of view") and f.J the credibility of 
such sentences. 
etc. 

Mathematically, the notion of a binary relation plays a fundamental role in the 
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represent value judgements, a first step consists in assessing them. The questioning 
procedure used for this purpose plays a fundamental role. Indeed, depending on the 
particular paradigm adopted for preference modelling, different questioning 
procedures can be conceived which lead to different preference structures. Sections 
4.3 to 4.5 are devoted to the presentation of a few questioning procedures related to 
three basic paradigms, together with some preference structures that are useful for 
MCDM. The classical preference-indifference structure is discussed in section 4.3, 
in section 4.4 the notion of "incomparability" is introduced, and the idea of 
"hesitation" is addressed in section 4.5. Finally, we present some complementary 
questioning procedures particularly relevant for cardinal modelling of value 
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4.2 RELEVANT BACKGROUND ON BINARY RELATIONS 

4.2.1 Notion of a binary relation 

A binary relation defined on a set X is a subset of the cartesian product Xxx, that is, 
a set of ordered pairs (x, y) such that x and y are in X In other words, R is a binary 
relation on X if and only if (iff) R s;; XxX = {(x, y) I x E X and y E X}. We use 
either (x, y) E R or xRy to denote that the pair (x, y) belongs to the binary relation 
R We use either (x, y) ~ R or xRy to denote that (x, y) does not belong to R 

If Rand T are two binary relations on X, RuT [resp. RnT] denotes the union 
[resp. the intersection] of the two subsets Rand T of XxX. We have, therefore: 



PREFERENCE RELATIONS AND MCDM 4-3 

"Ix, YEX: x(RuT)y iff[xRy or xTy], 
"Ix, YEX: x(RrlT)y iff[xRy and xTy]. 

4.2.2 Graph of a binary relation 

A binary relation R defined on a finite set X can be represented by a directed graph 
such that: 

• each element of X is represented by a point (node ofthe graph) 
• there exists an arc from node x to node y iffxRy. 

Example 4.1 The graph representation of the binary relation R = {(w, z), (x, y), 
(y, z), (x, z)}defined on X = {w, X, y, z} is: 

x· 

w· ----~~ • 
4.2.3 Basic properties of binary relations 

A binary relation R on the set X is 
./ reflexive iff "Ix E X: xRx 
./ irreflexive iff "Ix E X:xRx 
./ symmetric iff "Ix, y E X: xRy :=} yRx 
./ antisymmetric iff "Ix, y E X with x *- y: xRy :=} yRx 
./ asymmetric iff "Ix, y E X: xRy :=} yRx 
./ complete iff "Ix, y E X with x *- y: xRy or yRx 
./ strongly complete iff "Ix, y E X: xRy or yRx 
./ transitive iff "Ix, y, z E X: [xRy and yRz] :=} xRz 
./ negatively transitive iff "Ix, y, z E X: [xRy and yRz] :=} xRz 
./ semitransitive iff "Ix, y, z, W E X: [xRy and yRz] :=} [xRw or wRz] 
./ Ferrers iff "Ix, y, z, W E X: [xRy and wRz] :=} [xRz or wRy] 
./ acyclic iff "In E {I, 2, 3, ... } and VXj, X2, ... ,XnE X: 

[XJRxb ... , x,,-JRxn] :=} xnRxJ. 

4.2.4 Relationships between basic properties of binary relations 

The following are some of the relationships that can be established between basic 
properties of binary relations - see [8, 16]: 
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• R acyclic => R asymmetric 
• R asymmetric and transitive => R acyclic 
• R asymmetric and semitransitive => R transitive 
• R asymmetric and Ferrers => R transitive 
• R asymmetric and negatively transitive => R semitransitive 
• R asymmetric and negatively transitive => R Ferrers 
• R asymmetric and negatively transitive => R transitive 
• R acyclic and complete => R negatively transitive. 

Remarks 
1) [R asymmetric and transitive] does not imply [R negatively transitive] as 

proved by example 4.1, in which R is asymmetric and transitive but R is not 
negatively transitive: X&w, w&y but xRy. 

2) When R is asymmetric 
[R negatively transitive] (:) [R transitive and RN transitive] 

being RN (N for negation) the symmetric binary relation defined on X by 
'<ix, Y EX: xRNy iff [x&y and y&x]. In example 4.1, RN = {(w, x), (x, w), 
(y, w), (w, y), (x, x), (y, y), (z, z), (w, w)}. This relation is not transitive, 
because yRNw, WRNX but y&NX. 

4.2.5 Dual relation and symmetric and asymmetric parts of a relation 

Let R be a binary relation defined on X 
We call the dual relation Rd of R the binary relation defined on X by xR~ iff 

y&x. 
We call the symmetric part RS of R the symmetric binary relation defined on X 

by xRSy iff[xRy and yRx]. 
We call the asymmetric part RA ofR the asymmetric binary relation defined on X 

by xR~ iff[xRy and y&x]. 
It follows immediately that R = RSuRA, RSrlRA = 0 and that R transitive => [Rs 

transitive and RA transitive]. IfR is strictly complete than: (RA)N = RS, (RA)d = Rand 
it can be proved that [Rs transitive and RA transitive] => R transitive. 

Concerning duality, it is easy to verify that (Rd)d = R On the other hand, it can be 
proved that the following relationships among properties exist - see [12]: 

R asymmetric (:) Rd strongly complete 
R antisymmetric (:) Rd complete 
R transitive (:) Rd negatively transitive 
R semitransitive (:) Rd semitransitive 
R Ferrers (:) Rd Ferrers. 

4.3 THE CLASSICAL QUESTIONING PROCEDURE (QP1) 

4.3. 1 Presentation 
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Let X be a finite set of actions in a decision problem, f.> the property of (partial or 
overall) attractiveness and J the person who will express judgements about f.> for the 
elements ofX. 

Two actions (denoted x and y) are involved in the formulation of any questioning 
procedure, and the questions must be asked for all pairs {x, y} eX. The only 
answers accepted are those indicated next to the questions. Moreover, one (and only 
one) possible answer can be chosen. 

Questioning procedure 1 (QPl) 

Is one ofthe actions (x or y) more attractive than the other? YES NO 

If YES, which action (x or y) is more attractive than the other? x y 

4.3.2 Paradigm 1 and related binary relations 

The questioning procedure QPl is associated with the following paradigm: 
Paradigm 1 Two (and only two) basic preference situations (distinct and 

exclusive) should be considered for the expression of value 
judgements: the situation of preference and the situation of 
indifference. 

The answers obtained with QPl allow the construction of two binary relations 
on X: the relation P defined by xPy iff J judged x more attractive than y 

and 
the relation I defined by xl Y iff J did not judge any of the two actions 

more attractive than the other one 
(i.e., iff J answered NO to the first question). 

The questioning procedure QPl automatically leads to [p asymmetric] and [I 
symmetric]; moreover, it will always be supposed that J's answers are such that [I 
reflexive] . P is called a "strict" preference relation and 1 an indifference relation. 

With paradigm 1, one has xIy iff [xPy and yPx] that is pN = 1 (see remark 2 in 
section 4.2.4). The dual relation pel ofP also has an interesting interpretation in this 
context. Indeed, pd = Pvl which means that ~ iff ''x is at least as attractive as y". 

In general, the relation S semantically defined by [xSy iffx is at least as attractive 
as y] is called a "large" preference relation or an outranking relation. The 
following relationships between S, P and I always exist: I = SS (symmetric part of S) 
and P = SA (asymmetric part of S). It is only with the questioning procedure QPl 
(paradigm 1) that one has S = pel; this is due to the fact that paradigm 1 implies that 
S is strictly complete (recall from section 4.2.5 that, when R is strictly complete, 
(RA)d= R). 

Many particular binary relations ("particular" in the sense of verifying one or 
several basic properties) have been introduced and studied in the framework of 
paradigm 1. The six relations (3 plus the corresponding dual ones) in Table 4.1 are 
those that have been more extensively used in MCDM, in the framework of 
paradigm 1 
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Table 4.1 Some particular binary relations. 

Relation Properties Dual Properties Relation 

Strict simple 
Asymmetric 

d 
Strictly complete Simple order 

order 
Complete Antisymmetric or 

Negatively transitive B Transitive Total order 

Strict weak Asymmetric d Strictly complete 
Weak order 

or 
order Negatively transitive B Transitive Total preorder 

Strict 
Asymmetric 

d 
Strictly complete 

Semitransitive Semitransitive Semiorder 
semiorder Ferrers B Ferrers 

Taking into account the relationships that exist among basic properties of binary 
relations, it can be verified that: 

• R is a strict simple order <=> R is asymmetric, complete and transitive 
• R is a strict simple order <=> R is acyclic and complete 
• R strict simple order => R strict weak order => R strict semiorder 
• R total order => R total preorder => R semiorder. 

4.3.3 Some theoretical results 

The relevance of the six particular relations in Table 4.1 is due to the fact that for 
anyone relation denoted bye, there exists a homomorphism (sometimes injective) 
from (X, e) to (91, .), where 91 is the set of real numbers and, depending on the 
case, • denotes >, >1> ~ or~, ('<ir, s E 91, r >, s iffr > s + 1, and r~, s iffr ~ s + 1). 

In a more precise way, for the case of the three particular relations on the left side 
of Table 4.1, the following theorems can be proved (the respective theorems for the 
three corresponding dual relations can be obtained by replacing strict inequality (» 
by non-strict (~) inequality) - see, for instance, [8, 16, 17). 

Let X be a finite set and R a binary relation defined on X 
Theorem 4.1 There exists an injective mapping ~ from X to 91 such that 

'<ix, y E X [xRy iff ~(x) > ~(y)] 
iff R is a strict simple order. 

Moreover, ~ is an ordinal scale, that is, ~ is unique up to a strictly monotone 
increasing transformation. 
Theorem 4.2 There exists a mapping Jl from X to 91 such that 

'<ix, y E X [xRy iff ~(x) > ~(y)] 
iffR is a strict weak order. 

Moreover, ~ is an ordinal scale, that is, ~ is unique up to a strictly monotone 
increasing transformation. 
Theorem 4.3 There exists a mapping Jl from X to 91 such that 

'<ix, y E X [xRy iff ~(x) > ~(y) + 1] 
iffR is a strict semiorder. 

Note With an appropriate change of ~, any positive number could be used in 
Theorem 4.3 in place of 1. 
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In substantive terms, theorem 4.1 essentially means that the mathematical 
structure that models the notion of ranking without ex-aequo is the (strict) simple 
order, and theorem 4.2 means that the mathematical structure that models the notion 
of ranking with possibility of ex-aequo is the ( strict) weak order. 

Example 4.2 

x· 

w· -----.... 

This relation is asymmetric, complete and transitive. It is a strict simple order, to 
which corresponds the following ranking without ex-aequo: 

Example 4.3 

x· 

w· -----.... 

w 
,J.. 
x 
,J.. 

y 
,J.. 
z 

• 

This relation is asymmetric and negatively transitive. It is a strict weak order, to 
which corresponds the following ranking with ex-aequo (wand x): 

w,x 
,J.. 
y 
,J.. 
z 

• 
Theorem 4.3 shows that the notion of semiorder is linked to the notion of 

threshold. Even if we use precise measurement tools, a threshold exists below which 
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differences are not noticeable, leaving people sometimes to declare that ''x is equal 
to y", "y is equal to z", but ''x is not equal to z". 

As stated by Pirlot and Vincke [14], this fact has been acknowledged in the past 
by scientists like G. Fechner as early as in 1860, by H Poincare in 1905 and by 
others. In decision-aid, it is D. Luce who pointed out, in 1956, the phenomenon of 
intransitivity of "equality". 

Luce is the author of the famous example of the cup of tea, which shows that, 
even for a "totally" rational person, the indifference relation can be non-transitive 
for she is physically unable to perceive little differences. Pirlot and Vincke [14] 
present the example as follows: Let t; a cup of tea containing i milligrams of sugar. 
Any human being, comparing cups of tea, will generally consider that there is no 
difference between t; and t;+1 (nobody is able to perceive a difference of 1 milligram 
of sugar), and this, for every i. We say that a person is indifferent between t; and tj+ I. 
However, she may have a preference for t N over to (or the contrary) when N is large 
enough. 

Concerning the relations P and I obtained with questioning procedure QPl (p 
asymmetric, I = pN), the results above allow to state that: 
1) The answers of J give rise to a ranking without ex-aequo of the elements of X 

(this ranking being linked to the attractiveness of the elements of X for 1) iff P is 
transitive and I is reduced to {(x, x) I x EX}. 

2) The answers of J give rise to a ranking with possibility of ex-aequo of the 
elements of X iff P is transitive and I is transitive. 

3) If P is transitive but I is not transitive, we will be in presence of a threshold 
structure ofthe semiorder type iffP (or S = Pvl) is semitransitive and Ferrers. 

4.3.4 Practical issues 

How can it be verified in practice that we are facing one of the three cases above? 

Letting n be the number of elements ofX, a simple practical test consists of: 
~ The construction of a nxn tableau in which the entry x, y (line X, column y) is 

"P" iffxPy, or "I" iffxly, or is empty iffyPx. 
~ The association, with each element x of X, of a number n(x) (called the score of 

x) equal to the difference between the number ofP's in the line x and the number 
ofP's in column x. 

~ The definition of a ranking without ex-aequo Rn of the elements of X such that, 
Vx, y E X: xPy => x is ranked before y in Rn. 

~ The construction of an nxn tableau of the relations P and I, adapted to Rn in the 
sense that, Vi E {I, 2, ... , n}, line i and column i correspond to the element 
ranked i in Rn. 

It can easily be proved that: 
A) (P, I) has a semi order structure iff in the tableau adapted to Rn: 

i any entry in the main diagonal of the tableau is "f' and all "I" entries are 
symmetric in regard of the main diagonal 

ii any entry at the right or above a "P" entry is a "P" entry. 
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Vx, y E X: xPy => x is ranked before y in Rn. 

~ The construction of an nxn tableau of the relations P and I, adapted to Rn in the 
sense that, Vi E {I, 2, ... , n}, line i and column i correspond to the element 
ranked i in Rn. 
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A) (P, I) has a semi order structure iff in the tableau adapted to Rn: 
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symmetric in regard of the main diagonal 

ii any entry at the right or above a "P" entry is a "P" entry. 
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Remark Condition ii can be formulated in the following more original way: the 
broken line separating the "P" entries from the entries with no "P" 
(empty or "I" entries) is not interrupted and represents "steps" which 
are above the main diagonal. 

Example 4.4 
I P P 
I P P 

P P 

I I 
I I 

P 
P 
P 

I 
I 
I 
I 

p 

I 
I 

• B) (p, I) corresponds to a ranking with possibility of ex-aequo iff in the tableau 
adapted to Rn: 
i and ii are both verified, and 
iii in any situation of the type 

ITLIJ 
the "I" entries are situated in the main diagonal of the tableau. 

Remark Conditions ii and iii can be formulated in the following more original 
way: the broken line separating the "P" entries from the entries with 
no "P" (empty or "I" entries) is not interrupted and represents "steps" 
which are above the main diagonal and such that each one is 
supported (at least in part) by the main diagonal. 

Example 4.5 
p p p p 
p p p p 
p p p P 
I I I P 
I I I P 
I I I P 

I 

• C) (P, I) corresponds to a ranking without ex-aequo ifIin the tableau adapted to 
Rn: i, ii and iii are all verified, and 

iv all the "I" entries are situated in the main diagonal of the tableau. 

Remark Conditions ii, iii and iv can be formulated in the following more 
original way: the broken line separating the "P" entries from the 
entries with no "P" (empty or "r' entries) is not interrupted and 
represents "steps" formed by only an entry and supported by the main 
diagonal. 
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Example 4.6 

• Example 4.7 (illustrating the entire procedure) 
Let X = {XI> X2, X3, '4, XS, X(;, X7, Xs, XC}, XIO} and suppose that the judgements of J 

are: 

XI I P P P I P P P P 
X2 I P I P I I 
X3 P P I P P P P P P 
X4 I I 
X5 I P I P I 
X(; I P P P I P P P P 
X7 I I 
Xg P P P P I P P 
X9 I P I P I 
XIO I P P P P P I 

Scores: n(xl) =7-1= 6 RankingRn: X3 
n(x2) = 2 -4 =-2 -!. 
n(x3) =8-1= 7 XI 
n('4) = 0- 8 =-8 -!. 
n(x5) = 2 - 5 =-3 X(; 

n(Xt;) =7-1= 6 -!. 
n(x7) = 0- 8 =-8 Xg 

n(Xs) =6-3= 3 -!. 
n(x9) = 2 - 5 =-3 XIO 

n(xlO) = 5 - 3 = 2 -!. 
X2 
-!. 
Xs 
-!. 
X9 
-!. 
'4 
-!. 
X7 

Note Other different Rn rankings could be taken. For all of them the procedure 
would give rise to the same conclusion stated hereafter. 
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The tableau adapted to Rn is 

X3 X6 Xl Xg XIO X2 X5 X9 X4 X7 

P P P P 
p p p p 
p p p p 
p p p p 
p p p P 
I I P P 
I I P P 
I I P P 

I I 
I I 

Conclusion The broken line separating the "P" entries from the entries with no 
"P" (empty or "I" entries) is interrupted, which reveals that the 
judgements of J correspond neither to a ranking nor to a semiorder. 

An advantage of this type of tableau for decision-aiding is that it highlights the 
judgements that generates the absence of ranking. Confronted with such situation, J 
can reflect more deeply on her own judgements and eventually revise them. Helping 
people to learn about their own preferences is indeed a fundamental goal of the 
decision-aid activity. 

In the tableau above, the judgement XlOPx3 seems very peculiar. It appears in the 
following three cyclic situations: 

X3~ xJ>xlO, XlOPx3 

X3Pxb X1PxIO, XlOPx3 

X3Pxg, XgPxIO, XIOPx3. 

Suppose that, after reflection, J reviews her initial judgement between XIO and X3, 

and judges now that X3 is more attractive than XIO. The new scores of the actions are 
such that one can always take as Rn ranking the same ranking as before. The tableau 
adapted to Rn will then become: 

I I p p p p p p p p P 
I I P P P P P P P 
I I P P P P P P P 

I P P P P P P 
I I I p p p P 
I I I I P P 

I I I P P 
I I I P P 

I I 
I I 
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The judgements of J have now a semiorder structure. It is possible to associate a 
real mnnber Jl(x) to each element of X in such a way that, T/x., y E X [xPy iff 
Jl(x) > Jl(Y) + 1]. For instance, one can take 

Jl(X3) = 10 
Jl(X(;) = J.1(x,) = 8 
J.1(xs) = 5 
J.1(XIO) = 3 
J.1(X2) = 2.4 
Jl(xs) = J.1(X9) =1.7 
Jl(J4) = J.1(X7) = O. 

One can also easily see why there is no ranking. J has judged: 
xlOIx2' x2Ixs, x,oPxs and xlOIx2' X2~ x,0Px9 

This is a situation which - although considered as normal by Luce - is often a 
matter of reflection by a person who makes the value judgements. If, confronted 
with the situation, J says that she felt the difference of attractiveness between XIO and 
X2 very weak, and that, for a matter of precision, she would judge XIO more attractive 
than X2, one would have the following tableau: 

X3 X6 XI Xg XIO X2 Xs X9 X4 X7 

X3 I P P P P P 
X6 P P P P P 
XI P P P P P 
Kg P P P P P 
XIO P P P P P 
X2 I P P 
Xs I P P 
X9 I P P 
X4 I 
X7 I 

Now, the judgements of J give rise to a ranking which can be obtained by 
extending the "steps" horizontally or vertically. 

X3 X6 XI Kg XIO X2 Xs X9 X4 X7 

I P P P P P P P P P 
I I P P P P P P P 
I I ~p P P P P P 

I~ P P P P P 
I P P P P P 
I I I I P P 

I I I P P 
I I I P P 

I I 
I I 

The ranking is 
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X8 

,J.. 

• The learning process exemplified above for aiding J to construct a ranking of the 
elements of X (linked to their attractiveness for J) can be seen as the first phase of 
the MACBETH approach (Measuring Attractiveness by a Categorical Based 
Evaluation TecHnique) developed by Bana e Costa and Vansnick (see [2] and [4]). 
Applied to a tableau of judgements, the MACBETH software computes the scores of 
the different elements, establishes a ranking Rn and displays on the screen the 
tableau adapted to Rn (with all "P" entries coloured (light grey in Fig. 4.1 ». The 
software also indicates if the judgements of J give rise to a ranking and, if not, it 
verifies if at least a semiorder structure is present. Moreover, as the "P" entries are 
coloured, an examination of the tableau allows to easily identify which judgements 
are responsible for the absence of ranking. This is a friendly visual interactive 
platform for discussing with J. 

Sea .. 
6 

-2 
~ 

-8 
-3 

-8 
3 

-3 
o 

Ranking of alternatives? No , .. nking (8smi-ords,) 
IC3 le l .s K9 x1 0 x2 x5 x9 It. x7 SCOM 

.... PPPPP P P P d 9 
.1 
>IS 
oS 
,10 
02 
05 
09 
.4 
.7 

f-- I PPPP P P P r-..!.IIi, P P P P P P 
P P P P P P 
ijlIPPPP 

I ~.-h~4 
I 1I~4 
I I .. ~ 

I II 

o 
-2 
-3 
-3 
-8 
-8 

Figure 4.1 First phase of the MACBETH approach. 
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Fig. 4.1 shows the MACBETH screen fOT the case discussed in example 4.7, where 
the initial judgement ''x1O is more attractive than X3" has already been modified to 
''x3 is more attractive than XIO." 

4.4 INTRODUCING THE IDEA OF INCOMPARABILITY 

4.4. 1 Questioning procedures QP2 and QPt'iS and paradigm 2 

Questioning procedure 2 (QP2) 

Is one of the actions (x or y) more attractive than the other? 
YES NO I DON'T KNOW 

If YES, which action (x or y) is more attractive than the other? x y 

The questioning procedure QP2 is associated with the following paradigm: 
Paradigm 2 Three (and only three) basic preference situations (distinct and 

exclusive) should be considered for the expression of value 
judgements: the situation of preference, the situation of 
indifference and the situation of incomparability. 

The answers obtained with QP2 allow the construction of three binary relations 
on X: 

the relation P defined by xPy iff J judged x more attractive than y, 
the relation I defined by xly iff J answered NO to the first question 

and 
the relation? defined by x?y iff J answered 

I DON'T KNOW to the first question. 
The questioning procedure QP2 automatically leads to [p asymmetric], [I 

symmetric] and [? symmetric]; moreover, it will always be supposed that J's 
answers are such that [I reflexive] and [? irreflexive]. P is called "strict" 
preference relation, I indifference relation and ? incomparability relation. 

It is worthwhile noting that QP2 is equivalent to the following questioning 
procedure (QP2bis

), provided that an answer NO to both of its questions is equivalent 
to answer I DON'T KNOW to the first question ofQP2: 

Questioning procedure 2bis (QP2bis
) 

Is x at least as attractive as y? 
Is y at least as attractive as x? 

YES 

YES 
NO 
NO 

The answers obtained with QP2bis allow the construction on X of a binary 
relation S defined by xSy iff ''x is at least as attractive as y". S is called a "large" 
preference relation or an outranking relation. When QP2bis is used, the rational 
hypothesis required in J's answers is that they should be such that S is reflexive. 
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From S, one can derive the three relations P, I and ? as follows: 
xPy iff xSy and ySx (P = SA) 
xIy iff xSy and ySx (I = Ss) 
x?y iff xSy and ySx (? = SN). 

Note that under paradigm 2 - contrary to what happens under paradigm 1 - it is no 
more possible to derive I and S from P, except when ? is empty; indeed, one has 
pN = Iu? and pd = Su? However, one always has S = Pul. 

Theoretically, the difference between paradigm 1 and paradigm 2 is that, contrary 
to the latter, the former implies that S=PuI is strictly complete. 

4.4.2 Related preference structures 

The total order, total preorder, and semiorder structures, introduced in the 
framework of paradigm 1 (see Table 4.1) have been also studied in the context of 
paradigm 2. Partial order and partial preorder are classical structures but partial 
semiorder is a more recent one. 

The definitions of partial order and partial preorder can be obtained from the 
definitions of total order and total preorder by replacing strictly complete by 
reflexive. Intuitively, a partial order corresponds to the possibility of ranking 
without ex-aequo the elements of some subsets of X, while the partial preorder 
corresponds to the possibility of ranking, eventually with ex-aequo, the elements of 
some subsets of X. 

Example 4.8 The following is a representation of a partial order on X = {x" X2, 

X3, '4, XS, "<;}. 

xsD 
It corresponds to the following rankings without ex-aequo of the subsets of X: 

{,,<;, Xl} {,,<;, '4} {,,<;, xs} {X2' X3, '4} {X2' X3, xs} 
"<; "<; "<; X2 X2 

~ ~ ~ ~ ~ 
Xs 

Xs • 
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It is easy to verify that, ifRh R2, ... , ~ are k total orders (resp. total preorders) 
on X, then R = RlnR2n ... n~ is a partial order (resp. partial preorder). It is often in 
this framework that these structures appear in MCDM. 

Given a partial order (or preorder), the problem of replacing incomparability by 
preference situations in order to obtain a total order (or preorder) can also be 
interesting in MCDM. For the case of partial orders, this problem has been studied 
by Szpilrajn [21] since 1930 and it is the basis for the concept of dimension of a 
partial order. 

For a deep study of partial structures, we refer to [17, 10]. 
In the frameworks of both questioning procedures QPl and QP2, the relation P is 

transitive in aU the particular preference structures introduced in sections 4.3 and 
4.4. Let us point out that P transitive implies P acyclic, which is very interesting for 
MCDM. Indeed, in such a case, for each non-empty subset Y ofX, C(Y, P) == {y E Y 
I zPy for no Z E Y} * 0, that is, C(. , P) is a choice function on X. 

4.5 INTRODUCING THE IDEA OF HESITATION 

4.5.1 Questioning procedure QP3 and paradigm 3 

Questioning procedure 3 (QP3) 

Is one of the actions (x or y) more attractive than the other? 
YES NO I HESITATE I DON'T KNOW 

If YES, which action (x or y) is more attractive than the other? x y 

If you HESITATE, is your hesitation: 
1) between "x and y are equally attractive" and "x is more attractive than y" 

or (exclusive) 
2) between ''x and y are equally attractive" and ''y is more attractive than x"? 

The questioning procedure QP3 is associated with the following paradigm: 
Paradigm 3 Four (and only four) basic preference situations (distinct and 

exclusive) should be considered for the expression of value 
judgements: the situation of preference, the situation of 
indifference, the situation of hesitation between indifference and 
preference and the situation of incomparability. 

The answers obtained with QP3 allow to construct four binary relations on X: 
the relation P defined by xPy iff J judged x more attractive than y, 
the relation I defined by xly iff J answered NO to the first question, 

the relation Q defined by xQy iff J hesitated between 
"x and y are equally attractive" and ''x is more attractive than y" 

and 
the relation? defined by x?y iff J answered I DON'T KNOW to the first question. 
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The questioning procedure QP3 automatically leads to [p asymmetric], [Q 
asymmetric], [I symmetric] and [? symmetric]; moreover, it will always be 
supposed that J's answers are such that [I reflexive] and [? irreflexive]. 

Roy has termed the relations P strict preforence, I indifference, Q "weak" 
preference, and ? incomparability - see, for instance, [18, 19]. However, it is 
worthwhile noting that the use of the term ''weak'' preference for Q has unfortu
nately been prone to misunderstanding. Indeed, many people think that Roy's work 
was developed in a preforence intensity framework, but the truth is that Roy works 
in the framework of credibility of preference. Note also that the incomparability 
relation is often represented by "R" instead of"?" (see, for example, [19]). 

The main theoretical work concerning (P, Q, I, ?)-structures deals essentially with 
the three relations P, Q, and I, i.e. is developed for the case in which the 
incomparability relation ? is empty. The (P, Q, I)-structure does represent an 
important case, particularly when it implies the existence of a mapping J.1 from X to 
9t and two real constants ~ > c, ~ 0 such that, 'r/x, y E X, 

xIy iff 1J.1(x) - J.1(y) I :s; c, 
xQy iff c, <J.1(x) - J.1(y) :s; ~ 
xPy iff J.1(x) - J.1(y) > C2. 

In such a particular case, Cozzens and Roberts [5] speak about "double 
semiorder" and Roy and Vincke [20] speak about ''pseudo-order with constants 
thresholds". For a deep study of the (P, Q, I)-type structures see [5, 20, 24]. 

4.5.2 Questioning procedures QP3+ 

In section 4.4, we have shown that it is possible to obtain a questioning procedure 
equivalent to QP2 based on questions of the type ''x is at least as attractive as y". 
The same idea can be used to define another questioning procedure (QP3) which is 
not equivalent to QP3 but is very interesting as it easily permits the taking into 
account of missing, ambiguous, contradictory or conflicting information. 

* 

Questioning procedure 3+ (QP3) 

Is x at least as attractive as y? 
YES NO I HESITATE* I DON'T KNOw** 

Is y at least as attractive as x? 
YES NO IHESITATE* I DON'TKNOW** 

I HESITATE between YES and NO because certain aspects invite me to 
answer YES while other aspects invite me to answer NO 

** I DON'T KNOW because I have no information that makes me answer 
YES or NO. 

The answers obtained with QP3+ allow the construction on X of ten binary 
relations, six of them being asymmetric (answers {YES, NO}, {YES, I HESITATE}, 
{YES, I DON'T KNOW}, {NO, I HESITATE}, {NO, I DON'T KNOW}, {I HESITATE, I DON'T 

KNOW}) and the other four being symmetric (answers {YES, YES}, {NO, NO}, 
{I HESITATE, I HESITATE}, {IDON'T KNOW, IDON'T KNOW}). 
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QP3+ seems particularly well adapted to the case in which the questions concern 
the overall attractiveness of the elements of X. For the few available results 
concerning this new type of approach, see [22, 23]. 

4.5.3 Questioning procedures Qp:f 

The following is another questioning procedure (QPJF) linked with paradigm 3, that 
is, the paradigm that introduces the hypothesis of hesitation in the expression of 
value judgements: 

Questioning procedure 3F (QP3F) 

To each of the following statements, assign a real number between 0 and 1 
quantifying the credibility of the statement being true 

x is at least as attractive as y Credibility: .. . 
y is at least as attractive as x Credibility: .. . 

The answers obtained with QP3F allow the construction of a mapping SF from 
XxX to [0, 1] which associates with each ordered pair (x, y) a number SF (x, y) 
quantifying the credibility of the statement "x is at least as attractive as y". This 
mapping is often called aJuzzy outranking relation on X. 

In general, a mapping RF: XxX --. [0, 1] is called aJuzzy binary relation defined 
on X. Such mapping can be seen as an extension of the classic notion of a (crisp) 
binary relation R on X. Indeed, if \ix, y E X, we state that 

R(x, y) = 1 iff (x, y) E R and R(x, y) = 0 iff (x, y) '" R, 
the binary relation R on X appears as a mapping from XxX to {O, I}. 

Given the fuzzy relation RF defined on X and a real number A. E [0, 1], we denote 
by Ri. the classic binary relation defined on X by: \ix, y E X, xRAY iff RF(X, y) ~ A.. 
RA is called A-cut of RF. 

A possible way of studying fuzzy binary relations consists in extending the basic 
properties of (crisp) binary relations to the fuzzy context. There are several possible 
ways of making such an extension. The following definitions of fuzzy properties are 
of particular interest given the fact that all A.-cuts of a fuzzy relation RF verifying one 
(or several) of these properties will verify the corresponding crisp property(ies). 

A fuzzy relation RF on X is 
./ reflexive iff \ix E X: RF(X, x) = 1 
./ symmetric iff \ix, y E X: RF(x, y) = RF(y, x) 
./ asymmetric 
./ strongly complete 
./ transitive 
./ semitransitive 

./ Ferrers 

iff 
iff 
iff 
iff 

iff 

\ix, Y E X: min(RF(x, y), RF(y, x» = 0 
\ix, Y E X: max(RF(X, y), RF(y, x» = 1 
\ix, y, Z E X: rnin(RF(x, y), RF(y, z» :5; RF(x, z) 
\ix, y, z, W E X: 
rnin(RF(x, y), RF(y, z»:5; max(RF(x, w), RF(W, z» 
\ix, y, z, W E X: 
min(RF(x, y), RF(w, z»:5;max(RF(x, z), RF(W, y». 
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On the other hand, it is also interesting to study a fuzzy binary relation based on 
its A.-cuts. It is clear that it is equivalent to work with a fuzzy relation RF or with all 
the A.-cuts ofRF for A. E [0, 1], or even only with the A.-cuts ofRF corresponding to A. 
values equal to RF(x, y) for at least a pair (x, y). In this last case, one will be in the 
presence of a nested family of relations (because A.! < A.2 ~ ~! ::::> Ru) and this 
family is of course finite when X is finite. 

The notion of a family of relations has given rise to wide research, from the 
pioneering work of Roberts [15] and Fishbmn [9] to the more recent article by 
Doignon, Monjardet, Roubens and Vincke [7]. These references cover the topic in 
considerable depth. 

Still in the framework of questioning procedure QP3F
, let us finally mention the 

hard problem of: based on the fuzzy outranking relation SF on X, defining a fuzzy 
preference relation pF on X, a fuzzy indifference relation IF on X and a fuzzy 
incomparability relation ?F on X For the study of this problem, together with the 
representation of fuzzy relations in preference modelling, see [13]. 

4.6 OTHER COMPLEMENTARY QUESTIONING PROCEDURES 

In going from paradigm 1 to paradigms 2 and 3, we have introduced the possibility 
of explicitly taking into account the situations of "hesitation" and of "inability to 
choose one of the proposed preference situations" when expressing value 
judgements (be it because of uncertainty, ambiguous or contradictory information, 
or due to lack of sufficiently rich information). The possibility of modelling 
situations of poor information offered by questioning procedures QP2, QP2bis

, QP3, 
QP3+ and QP3F is undoubtedly interesting. 

On the other hand, it is also very interesting to complement QPl with a richer 
and more precise questioning procedure enabling one to go from ordinal to cardinal 
preference modelling, in particular when one wants to assess value judgements 
about the relative attractiveness of actions with regard to a certain point of view. As 
a matter of fact, assessing ordinal value judgements is not too difficult but, 
unfortunately, this information is not enough in most practical applications of 
MCDM, in which one needs to know, not only that x is more attractive than y, but 
also by how much. It is precisely to address this problem that the MACBETH approach 
has been developed. 

Based on semantic judgements of a person J about the attractiveness of the 
elements of a set X, MACBETH is an interactive approach to aid J to quantify the 
attractiveness of each element, in such a way that the measurement scale constructed 
is a cardinal scale on X. As a matter of fact, once a ranking (with possibility of ex
aequo) is obtained with questioning procedure QPl (that is the relations P and I are 
transitive) the following complementary questioning procedure is used in MACBETH 

to enter into the cardinal domain. 

Complementary questioning procedure (QPlc) 
V (x, y) E P, the difference of attractiveness between x and y is 

VERY WEAK WEAK MODERATE STRONG VERY STRONG EXTREME 
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Other than the relations I and P previously obtained with questioning procedure 
QP1, QPlc gives rise to a partition ofP into six binary relations C h C2, C3, C4, Cs 
and C6 defined as follows: 'iI (x, y) E P, 

(x, y) E C 1 iff J judged the difference of attractiveness (dif. att.) between 

(x, y) E C2 

(x, y) E C3 

(x, y) E C4 

(x, y) E Cs 
(x, y) e C6 

x and y to be VERY WEAK 

iff J judged the dif. att. between x and y to be WEAK 

iff J judged the dif. att. between x and y to be MODERATE 

iff J judged the dit: att. between x and y to be STRONG 

iff J judged the dit: att. between x and y to be VERY STRONG 

iff J judged the dif. att. between x and y to be EXTREME. 

Taking into account the goal of constructing a cardinal scale on X, the minimum 
rationality required in J's answers to questioning procedure QPl C is that they should 
be such that there exists a mapping J1: X ~ 91 satisfying the following conditions: 

Condition 4.1 'ilx, y E X: xPy <=> J1(x) > J1(y) 
Condition 4.2 'ilk, k' E {l, 2,3,4,5, 6}, 

'ilx, y, W, ZEX with (x, y) E Ck and (w, z) E Ck' 

k > k' ~ J1(x) - J1(Y) > J1(w) - J1(z). 

Certainly, there exists J1: X ~ 91 satisfying condition 4.1, because J's answers to 
QPl were supposed to give rise to a ranking of the elements ofX. This is to say that 
an ordinal scale "measuring" the attractiveness of the elements of X can be defined 
on X. But, to construct with J a cardinal measurement scale on X, conditions 4.1 and 
4.2 should be simultaneously satisfied. J's answers to QPlc are said to be consistent 
(with regard to the main goal of constructing a cardinal scale) when it is possible to 
satisfy conditions 4.1 and 4.2 simultaneously. 

The MACBETII software tests the consistency of J's judgements by linear 
programming. In case of inconsistency, the software immediately finds the possible 
sources of inconsistency, in order to enable a discussion with J and thereby to aid 
her to eventually revise her initial judgements. Moreover, in case of consistency, a 
first scale J1 is obtained by linear programming. This scale can be used as the starting 
point for a discussion with J aiming at constructing a cardinal scale on X measuring 
the attractiveness, for J, of the elements ofX. The MACBETH software was conceived 
to facilitate the perception by J of the first scale J1, the discussion of that scale and 
the evolution towards the cardinal domain (see [4] for details). 

Theoretically, QPl c can be linked to the two important research domains of 
families of relations and of difforence measurement. 

1) The binary relations C h ~, C3, C4, Cs and C6 allow the definition of the 
following six relations, which form a nested family of binary relations on X: 

PI = CIUC2uC3UC4UCSUC6 (= P) 
P2 = C2UC3uC4UCSUC6 
P3 = C3UC4UCSUC6 
P4 = C4UCSUC6 
Ps =CSuC6 

P6 =C6. 
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As said before, there are many works devoted to this subject. Let us detach 
the work of Doignon [6] that studies and solves the following general 
problem: 
Given m relations PI. P2, ... , Pm on the finite set X, when do there exist a 
real-valued mapping f on X and nonnegative real numbers 0'1. 0'2, ... , O'm such 
that for all j E {I, 2, ... , m} and x, y E X, xPjy <=> f(x) > f(y) + O'j? 
Doignon's results generalize the results of Cozzens, Roberts, Roy and Vincke 
mentioned in the last paragraph of section 4.5.1. Inspired by Doignon's work, 
Bana e Costa and Vansnick [3] give also necessary and sufficient conditions 
for the consistency of J's answers to QPlc. 

2) The binary relations I (here noted Co), CI. C2, C3, C4, C5 and C6 enable one to 
define a binary relation >-* on XxX by making, 'V(x, y), (w, z) E XxX, 
either (x, y) >-* (w, z) iff 

[(x, y) E Ck, (w, z) E Ck" k, k' E to, 1,2,3,4, 5, 6} and k > k'] 
(pOSitive-difference structure) 

or (x, y) >-* (w, z) iff 
[(x, y) E Ck, (w, z) E Ck" k, k' E to, 1,2,3,4,5, 6} and k > k'] 
or [(y, x) E Ck, (z, w) E Ck" k, k' E to, 1,2,3,4,5, 6} and k < k'] 
or [(x, y), (z, w) E P = CIUC2UC3UC4UC5UC6]' 
(algebraic-difference structure) 

For the study of such structures see [8, 11, 16]. Relating more closely to the basic 
framework ofthe MACBETH approach, Adams [1] also gives a theoretical answer to 
the problem of the consistency of J's judgements. 

Let us finally mention that other complementary questioning procedures than 
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5-2 NORMATIVE AND DESCRIPTIVE ASPECTS OF DECISION MAKING 

Abstract: The problems of human behavior in decision processes are 
central in this chapter. The gaps between the requirements of decision 
methods and the possibilities of human information processing systems are 
analyzed. The qualitative model describing the decision maker's behavior is 
proposed. The model defines the guidelines for the construction of decision 
methods justified from behavior point of view. 

5.1 SPECIFIC FEATURES OF DECISION 
MAKING AS A BRANCH OF RESEARCH 

Decision Making, as a branch of research, has two main features distinguishing it 
from other research disciplines such as Economics and Operations Research: 

1. For typical Operations Research problems, the information needed to 
solve a problem is given in the problem's statement. Contrary to the latter, the 
initial statement of any decision making problem has elements of uncertainty 
connected with a lack of information on general criterion of the solution's quality 
and/or the consequences of the decision's variants. This is why information from a 
Decision Maker (OM) and experts is required for the solution of a decision making 
problem. It is possible to say that a statement of any decision making problem 
includes a priori unknown preferences of the DM. This is why inside any decision 
making method there are some procedures of information elicitation from the OM 
(or a group of OM). 

2. The primary step in many economical studies and in Operations Research 
is the construction of models representing the reality, small pieces of the real world 
having a mathematical description. In contrast to the latter, typical Decision 
Making problems imply the construction of a subjective model representing the 
personal perception of such a decision problem by the OM as the primary step. This 
subjective model reflects the OM's policy in the situation of a choice. 

The distinguishing features of Oecision Making as a research branch make 
the DM the central figure of the decision making process. Therefore, behavioral 
aspects become the central features in this line of research. 

The goal of this chapter is to look at the Decision Making field of research 
from this point of view, to summarize the existing knowledge about human 
behavior in the decision processes, to analyze the existing gap between descriptive 
and normative approaches in decision making, and to draw some criteria for the 
construction of decision aiding tools and to demonstrate the importance of behavior 
aspects. 

5.2 THE GAP BETWEEN DESCRIPTIVE AND PRESCRIPTIVE 

The source of the widely accepted gap between the requirements of decision 
methods to human beings and the possibilities of human information processing 
systems lies in the historical development of Decision Making as a research field. 
Decision Making has two roots: 
• economical utility theory; 
• operations research. 
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5.2.1 Utilities and probabilities 

Each portion of a purchased commodity (e.g., bread or tea) has its consumer utility. 
The law of marginal utility reads as follows: the marginal utility decreases, that is, 
subsequent portions of a commodity are less valuable to the consumer than initially, 
which is quite understandable from our everyday experience. If there exists a need 
for several commodities, the consumer attempts to allocate money to support a 
constant ratio of the utility of a commodity to the general measurement unit 
(dollars, rubles, etc.). 

Stated differently, more money must be invested into commodities of 
higher utilities. The same human behavior is inherent to the problem of 
investments - more money is put into more useful areas of activity. Economists 
believe this is the only correct behavior and refer to the person making such a 
choice as a rational person. It is assumed that rational persons are intrinsically 
consistent and that transitivity of choice is appropriate to them. 
Second, it is assumed that, when making a decision, a rational person maximizes 
his utility. 

To conclude, what does the rational person do? First of all, they list all 
possible decisions and their consequences for which utilities (or money values) are 
determined. For each variant of a decision, the probabilities of all its outcomes are 
determined (no matter how). Next, the expected utility of each variant is calculated 
by summing the products of utilities by corresponding probabilities. The best 
variant is that which has the maximum expected utility. 
J. von Neumann and O. Morgenstern laid the scientific foundation for the utility 
theory in their well-known "Theory of Games and Economic Behavior" [48]. The 
utility theory as presented in this book is axiomatic. The originators of the utility 
theory made use of so-called lotteries, where two results (outcomes) with respective 
probabilities exist, as simple problems of choice and demonstrated that if human 
preferences for simple problems (lotteries) satisfy some axioms, then human 
behavior can be regarded as maximizing expected utility. 

The axioms used by the authors of [48] assert, for example, that a person 
can compare all outcomes and he/she is transitive, due to possibility of determining 
the probabilities under which lotteries constructed on pairs of outcomes (out of 
three) are equivalent, etc. The axioms are required to infer the theorem of existence 
of the utility function for a person that agrees with the axioms. 

The internal utility function of the DM is used to measure the utility of any 
outcome. The theory presented in the classic book by J. von Neumann and O. 
Morgenstern needs a quantitative measurement of all utilities and probabilities. 
Von Neumann and Morgenstern's theory assumes that probabilities are given as 
objectively known magnitudes. D.Savage [39] developed an axiomatic theory 
enabling one to measure simultaneously utility and subjective probability which 
gave rise to the model of Subjective Expected Utility (SEU) where the probability is 
defined as the degree of confidence in fulfillment of one or another event. 

Together with the development of utility theory and SEU some findings 
appeared concerning human behavior in the lotteries choice. Well known is the so
called Allais' paradox that was the object of hot disputes for several years [37]. 
People repeatedly demonstrated contradictory numerical evaluations of utility in the 
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tasks of choice. 
Inconsistent human behavior in lotteries choice was demonstrated [5]. 

Furthermore, it was demonstrated that people don't believe in Savage axioms [43]. 
The difficulties of checking axioms in the applications became evident. 

The entire research on Decision Making theory was greatly influenced by 
the psychological studies of P.Slovic, A.Tversky, B. Fischhoff [14], et aI., who 
demonstrated the existence of human errors made when evaluating event 
probabilities. The main causes of these errors can be represented as follows [14]: 
• Judgement from representativeness: people judge about the membership of an 

object A to the class B only from its similarity to the typical representative of B 
disregarding the a priori probabilities. 

• Judgement from availability: people often evaluate the probabilities of events 
on the basis of their own meeting with such events. 

• Judgement from the anchoring point: if initial information is used as a 
reference point for determining probabilities, then it exerts significant 
influence on the result. 

• Superconfidence: people place too much confidence in their evaluations of 
event probabilities. 

• Tendency to eliminate risk: people try to eliminate risky situations as much as 
possible. 

These work may bring into question the possibility of practical application of utility 
theory and SEU theory. 
Clearly, it was the first demonstration of a gap between descriptive and normative. 

5.2.2 Prospect theory 

Attempts were made to update utility theory so as to eliminate the most salient 
discrepancies between theory and real human behavior. The Theory of Prospects [4, 
15] is the most conspicuous attempt of this kind. By prospect we mean a game with 
probabilistic outcomes. 

Prospect theory allows for three behavioral effects: 
• certainty effect, that is, the tendency to give greater weights to determinate 

outcomes, 
• reflection effect, that is, the tendency to change preferences upon passing from 

gains to losses, and 
• isolation effect, that is, the tendency to simplify choice by eliminating the 

common components of decision variants. 
All these effects being taken into consideration, the value of a lottery to gain 
outcomes x and y with respective probabilities p and q is defined by mUltiplying the 
utilities of the outcomes by the subjective importance of the probabilities of these 
outcomes. The function of the subjective importance of the probabilities has some 
specific features that allow one to avoid the Allais' paradox and give some 
explanations to other disagreement between the theory and human behavior. 

The theory of prospects recommends to "edit" prospects before comparing 
them - for example, to eliminate identical outcomes with identical probabilities, to 
merge in one prospects with identical outcome, and so forth. 

Despite the fact that the theory of prospects eliminates some paradoxes of 
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choice stemming from the utility theory, it does not eliminate all problems and 
paradoxes appearing upon studying human behavior in the problems of choice. The 
possible paradoxes appear when editing the prospects. A solution of the problem 
depends very much on the way in which one "frames" it. Furthemore, the quite 
natural desire to round the probabilities and utilities leads to different results of the 
prospect comparison depending on the rounding [53]. 

The prospect theory, as well as the utility theory relies on an axiomatic 
basis. A common problem with all axiomatic theories is the validation of the 
axioms allowing one to use one or another form of the function of utility (value) of 
the theory. 

The common feature for the utility theory, SEU and the prospect theory is 
the same representation (model) of the decision problem: in the form of the holistic 
parameters of the utility (value) and probability. In the middle of the 70-ies a 
different model became more popular and promising: the multicriteria description 
of the positive and negative factors influencing the choice. The reason is that 
utilities and probabilities manifest itself in the multiple criteria of alternatives' 
evaluation. 

5.2.3 Multiattribute utility theory 

The next step in the evolution of the utility theory was marked by the transition to 
the multicriteria or Multiattribute Utility Theory - "MAUT" [16]. The construction 
of a strict and harmonic mathematical theory of utility under multiple criteria was a 
great merit of R. Keeney and H. Raiffa. The theory is constructed axiomatically, 
where the general axioms of connectivity and transitivity on a set of alternatives, 
etc., are complemented by the axioms (conditions) of independence. There exist 
many conditions [12] which conceptually define the possibility of comparing 
alternatives in one criteria, while the estimates in other criteria are being fixed (at 
different levels). For example, the condition of the preference independence states 
that comparisons of alternatives in two criteria are valid if their estimates in other 
criteria are fixed at any level. If the conditions of such a kind are met for all pairs 
of criteria, then the existence of a utility function in different forms is proved. We 
note that the Multicriteria Utility Theory is directed to the problems where 
existence of many alternatives justifies great efforts that are required to construct a 
utility (value) function. 

After the development of "MAUT', critical comments were made about 
possibilities of validating all axioms and conditions needed for the existence of a 
multicriteria utility function in one or other form. For example, the sum of the 
importance coefficients of the criteria is to be equal 1 for the existence of a utility 
function in the additive form [17]. The question is: if we take into account the 
possible small errors in the measurement, which value of the sum is close to I? 
[51 ]. 

In the construction of one dimensional utility functions the lotteries were 
used as the preferences elicitation tool. But human behavior in a lottery choice is 
inconsistent [5]. 

Again there is an evidence of a gap between the requirements of the 
decision methods (normative) and the possibilities of the human information 
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processing system (descriptive). 

5.2.4 Multicriteria counterparts of the well-known problems of operations research 

The second root of Decision Making as a branch of research is Operations 
Research. 

The introduction of multiple quality criteria enables one to obtain 
multicriteria counterparts of the well-known problems of the operations research. 
For example, additional criteria are readily built into the generalized transportation 
problem [49] which can be formalized as a multicriteria problem of linear 
programming for which multitude of methods were developed [46]. Also, there are 
multicriteria assignment problems [22], multicriteria bin packing problems [24] 
which are counterparts of the well-known Operations Research problems. 

There exist a great deal of the man-computer procedures enabling DM to 
examine the domain of the admissible decisions and at the same time to establish a 
compromise between the criteria [46]. 

The man-computer procedure consists of alternating phases of analysis 
(performed by the DM) and optimization (performed by the computer). Each phase 
can consist of more than one step. 
Optimization phase (computer): 
• using the information received from the DM at the preceding step, a new 

decision is computed and auxiliary information for the DM is generated. 
Analysis phase (DM): 
• the presented decision (or decisions) is estimated and its admissibility is 

determined. If the answer is positive, then the procedure terminates; otherwise, 
auxiliary information is considered; 

• additional information is communicated to enable computation of a new 
decision. 

The man-computer procedures differ in content and execution of the above steps. 
Their efficiency depends mostly on the nature of the DM-computer interaction that 
is represented in terms of the quality and quantity of the information. 

Together with the development of many man-computer procedures, there 
appeared papers with the evaluation of such procedures from the behavioral point 
of view [18, 25]. The analysis demonstrated that many operations required from 
people in the framework of the man-computer procedures are difficult for the 
human information processing system. People show intransitivity in the process of 
choice, show suspiciously fast convergence to the solution and so on. 

Again we witness here the evidence of a gap between descriptive and 
normative. 

All the gaps mentioned above lead us to the question: what could be said 
about a human being as a DM? 

5.3 THE QUALITATIVE MODEL OF THE HUMAN DECISION MAKER 

On the level of the existing knowledge it is possible to summarize the evidence 
about human behavior in the decision processes in the following way. 
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5.3.1 The features of the human information processing system 

A. Limited span of the working memory. 
According to cognitive psychology [45], human beings have a limited span 

of the short -term memory. In repeated tasks the span of the working memory could 
be enlarged [9] but it takes both time and efforts. 

That is why the DM cannot simultaneously pay attention to many factors 
(or evaluations of alternatives upon criteria) in the new decision tasks. As a matter 
of fact, for the new tasks DM has no possibility to create the internal structure of 
the necessary knowledge. 

This limitation manifests itself in such known facts as: 
The DM is trying to simplify the description of the decision situation by replacing 
some of the criteria by limitations, by eliminating some of the criteria, by grouping 
the alternatives and so on [25]. Such behavior is the unconscious desire to decrease 
the load on the short-term memory. 

Experienced DMs have usually the skill of simplifying the decision 
situation in the best possible way. For inexperienced DMs a significant increase in 
the number of contradictions for more complex decision tasks is typical [25] 
B. Limited exactness in quantitative measurements. 

According to the existing knowledge, a human being is not an exact 
measurement device producing quantitative measurements. The famous experiment 
of A.Tversky [47] demonstrated that people neglect small differences in the 
evaluations. It is the reason for the intransitive behavior in some problems of 
choice. Inability to take into account small differences in the evaluation leads to the 
elimination of the dominating alternatives by the conservation of the dominated 
ones [19]. 

The experiments demonstrated that people can poorly measure the 
probabilities in the quantitative way (see above). The change in the method of 
measurement, the transfer from the quantitative to the verbal probability allows one 
to decrease significantly the number of the preference reversals [13]. 

It was demonstrated in the experiments [28] that slightly different 
procedures of the quantitative measurements for the same variables give quite 
different results. 
C. Human errors and contradictions. 
It has been known since the time of antiquity that "To err is human". People err 
when processing information. There could be different reasons for such a behavior: 
weariness, lack of attention, habitual heuristics and so on. 

5.3.2 The features of human behavior in the decision processes 

A. Absence of preconceived decision rules in new decision tasks. 
As many researchers supposed, the DM has no preconceived decision 

rules. As noted in [52] it can be hardly expected that the utilities and numbers 
expressing the subjective estimates of the objects and situations are just stored in 
our minds until elicited. 

To develop a decision rule the DM needs time and some learning 
procedures. Usually people use some kind of a "trial and error" approach in such 
procedures. 
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B. Search of the dominance structure. 
At every step of the decision making procedures people pay attention to a 

limited number of objects. This is a possible explanation to the psychological theory 
of human behavior in the decision tasks-the search of the dominance structure [32]. 
According to the theory, in the case of the limited number of alternatives people 
make a preliminary selection of the potentially best alternative and compare it pair
wise with other alternatives, trying to check the fact of dominance. 

In the case of a larger number of alternatives, people use initially the 
strategy of eliminating by aspects and after that utilize a more elaborated process 
(like the search of dominance) for a smaller number of alternatives. 
C. Minimization of human efforts. 

J. Payne et al. [35] suggested and substantiated another theory of human 
behavior upon choosing the best multicriteria alternative(s) that can be called the 
theory of the constructive processes. 

When comparing multicriteria alternatives, people can use various 
strategies. The studies of J. Payne et al. [35] have demonstrated that in the process 
of the decision making subjects often choose a strategy depending on the specific 
features of the alternatives under consideration (their evaluations by criteria). Here, 
the human preferences of the alternatives and criteria are very unstable. At the local 
stages of the comparison, rules (or their parts) can vary depending on the relation 
between the required human effort and the accuracy of choice. 

As J. Payne et al. notes, such a behavior is a characteristic of the untrained 
subjects. People experienced in the decision making, as well as regular decision 
makers have their preferable strategies for solving problems. 

5.3.3 The features of human behavior in organizations 

A. Satisfactory decisions. 
The studies of economists and psychologists provided an insight into the 

human decision making in large organizations. 
Ch. Lindblom [31] notes the officers organizations try to make as small 

changes in the existing policy as possible to be able to adjust to the environmental 
changes. It is not only easier to work out such changes, but also to coordinate them 
within an organization. The sequence of changes is mostly the means for forming 
the current policy. Lindblom also believes that this way of solving problems is more 
realistic because it requires less effort and is more customary for the managers. On 
the other hand, this approach is more conservative and is not adjusted to dramatic 
changes in the policy. 

Similar discoveries were made by H.Simon [41] who introduced notion of 
satisfactory decisions as a counter to the optimal ones. In organizations, the life 
itself brings people to seek satisfactory decisions - the environment is too 
complicated to be described by a model, the multiple criteria are defined 
incompletely, there are many active groups influencing the choice, etc. This natural 
behavior of the personnel resulted in the loss of the strategic objectives amid the 
petty, everyday routine. 
B. Taking the power in the hands. 
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The desire to have the decision situation under control is typical for the 
behavior of a DM in organizations. It means that the DM is trying to control all 
stages of the decision making, all transformations of the information influencing a 
decision. 

Speaking differently, the DM is trying to have the power in the hands. In 
the case when it is necessary for him/her to take into account the interests of 
different active groups, the DM is looking for a mutually satisfying decision. [27] 
but he/she is always trying to implement the principal components of own policy. 

5.4 HOW TO REDUCE THE GAP BETWEEN DESCRIPTIVE AND 
PRESCRIPTIVE 

The above features of human behavior define the numerous gaps between the 
requirements of the different normative methods and the possibilities of human 
beings to meet such requirements. The discrepancy manifests itself in human errors 
and contradictions badly influencing the results of an analysis, as well as in 
mistrust in the results of the DM to the results presented by an analyst and so on. 

There are several remedies to save the situation. First, it was the idea to 
improve the human performance in the process of choice: to teach people how to 
use the axiomatic methods or to train them to make the quantitative measurements. 

Unfortunately, we do not have any evident confirmation of success for this 
approach. Even more, it became clear that many features of human behavior could 
be explained by the basic organization of the human information processing system 
[42]. 

The second reaction to the gaps is the following: human behavior is not 
important factor in the decision processes. One could take evaluations in the 
qualitative form but transform them quickly in the qualitative form appropriate for 
many decision methods. On the final stage of the decision process it is possible to 
use the so-called sensitivity analysis to check the influence of the different factors 
on the output of an the analysis. 

Unfortunately, the task of sensitivity analysis is very complex. It is an 
independent difficult problem and only the skill of an analyst could shed light on 
the influence of the different factors. 

The approach we have taken [26, 30] differs from the others. From our 
point of view it is necessary to adapt the decision methods to human behavior. 

A possible way to close the gaps consists of taking the behavior finding 
concerning human behavior as constrains for the normative decision aiding 
methods [26]. By going on such a way it is possible to use the qualitative DM 
model described above as a base for the construction of the decision aiding tools 
and the decision support systems. 

In other words, on the basis of the behavior findings it is possible to 
formulate special requirements to the characteristics of the decision aiding methods 
[30]. 

5.5 BEHAVIORAL REQUIREMENTS ON THE METHODS OF DECISION 
MAKING 

The knowledge about human behavior in the decision processes allows us to define 
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the requirements for the methods for the decision making [26]. 

5.5.1 Measurements 

The methods must be adjusted to the language of the problem description that is 
natural to the DM and their environment. To be socially acceptable, the decision 
method must be readily adjustable to the accepted way of discussing problems in a 
particular organization. 

The kind of a "natural language" depends on the type of the problem. For 
so -called ill-structured [40] problems the combination of the quantitative and 
qualitative variables is typical. It is true, for example, for the multicriteria 
counterparts of the well-known problems of operations research. One has usually an 
objective quantitative model for such problems. The criteria for the evaluation of 
the decision's quality are some functions from the quantitative variables. Therefore, 
for such problems the quantitative language of measurement is natural. 

There are many ill-structured and some unstructured problems where main 
variables (or criteria) have an objective quantitative nature like distance, money, a 
number of residents and so on [16]. Here also the quantitative language is natural 
and widely accepted. 

For typical unstructured [30] problems, this usually means that the 
estimates of the criteria and, consequently, the estimates of the variants by the 
criteria are presented in a verbal form. The verbal estimates are located usually on 
the ordinal scales of the criteria. Such estimates create an adequate language for 
describing unstructured problems. 

The decision method must be adjusted to such a description. Hence, by 
defining one or another form of verbal scales the DM defines the "measurer" for the 
experts estimating alternatives on these scales. The same verbal estimates are used 
by the DM to define the requirements to alternatives, that is, the decision rule. 

Additionally to the kind of a problem, the methods of measurement are to 
be defined by an uncertainty level of evaluations upon criteria. The uncertainty 
level demonstrates itself in the ability of having an exact measure of the variable. In 
the case of exact measurements made by a measurement device one has negligible 
level of uncertainty. In case of the human measurements, levels of uncertainty are 
defined by the possibilities of a human being to give the information in a different 
form and with different reliability. 

5.5.1.1 Quantitative human measurements 

For the situation where the quantitative language of measurement is accepted it is 
necessary to take into account the characteristics of a human being as a 
measurement device. 

The estimates on the criteria scales must reflect changes in the value 
(utility, preference, importance, distinctness, etc.) of an alternative with a 
corresponding change of the estimate by a given criterion. It is known that people 
can poorly estimate and compare objects of close utilities. With the continuous 
scales, slight distinctions in the estimates can result in different comparisons of the 
alternatives. Indeed, all other estimates being equal, the preferableness of an 
alternative will be defined by one insignificant difference. 
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The experiment of A. Tversky [47] that demonstrated the stable 
intransitivity of choice was based precisely on this property. The subjects were 
given successive pairs of alternatives where the gain slightly increased with a slight 
increase in the payment. And they persistently preferred to get a higher gain for a 
slight increase in the payment. Yet, when given the alternatives from the first and 
the last pairs, they persistently preferred the first one, because they could not admit 
such a great increase in the payment even for a corresponding increase in the gain. 
In our view, the continuous scale of the estimates prevented the subjects from 
seeing the gradual transition from quantity to quality. If the same subjects were 
given the same task but with the ordinal (qualitative or verbal) estimates of the 
payment and the gain, then a transitive relationship could easily result. 

Some of the results of our experiments in choosing a summer country
house [33] are indicative for the inconvenience of the continuous scales. Two 
continuous-scale criteria, the cost and the size of the territory, were used in these 
experiments. It was noted that for insignificant discrepancies in the evaluation of 
the country-house the subjects do not necessarily find the alternatives that dominate 
the remaining ones. The subjects sometimes eliminated from the subset of the best 
alternatives (even if their number is only in the range from four to seven) an 
alternative dominating one of the remaining alternatives. This observation can also 
be attributed to the fact that insignificant (5-7%) variations in the cost do not affect 
appreciably the values of the alternatives. Though the subjects assert that 'the 
cheaper the better' if this difference is pointed out, on the whole they agree that 
both variants have the same utility. 

The experiments suggest that the quantitative measurements are the most 
sensitive to small errors and differences in the DM answers, which gives rise to the 
question of the accuracy of human measurements, especially under indefiniteness. 
It is well known that in physics the accuracy of measurements depends on the 
precision of the instrumentation. The same applies to human measurements. The 
available results of the experiments are indicative for the fact that man cannot 
make precise quantitative measurements. 

It means that while performing the quantitative measurements it is much 
better to replace the continuous scales by the ones with discrete evaluations. Such 
evaluations could represent some intervals on the continuous scales which have a 
meaningful interpretation for the DM. Sometimes it is preferable to use for such 
intervals verbal labels like "expensive", "cheap" and so on for the cost evaluation. 

5.5.1.2 Transition from qualitative notions to numbers 

For the situations where qualitative language of a problem's description is natural 
(unstructured problems) let us discuss the attempts to combine the qualitative 
measurement scales and the quantitative representation of the results. First of all, 
we should mention the simple means of establishing a mutual correspondence 
between the primary qualitative measurement scale and the quantitative scale of 
scores where the primary measurements are carried out in a qualitative form and 
(independently of the expert's will) are assigned certain numbers which are then 
used to estimate the variants of the decisions. This method of measurement is not 
reliable because no logical basis underlies the assignment of one or another 
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numerical value to the primary estimates. The worst of it is that the numbers are 
further treated as the results of the objective physical measurements. For example, 
when estimating the quality of the objects by multiple criteria, the scores by criteria 
are regarded as the results of the quantitative measurements and are often 
multiplied by the weights of the criteria and summed up. 

When considering the problems of a political choice, Dror [6] drew 
attention to the fact that people assign different numerical estimates to the same 
verbal definitions. We do not think that this necessarily means that one person 
believes that this event occurs with 70% probability and that 70% refers to a highly 
probable event, whereas another person believes that this event occurs with 90% 
probability and that 90% refers to a highly probable event. Both experts are, 
possibly, sure that this event is 'very probable,' but when they are asked to evaluate 
this probability numerically (for example, in terms of a percent or somehow else) 
they replace their ignorance of this number by some (rather arbitrary) number. 
Human estimates corresponding to the same verbal definition on the scale were 
experimentally shown to have a rather great dispersion [50] which is especially 
great for the estimates representing the mean' neutral' level of the quality. 

The second popular approach is that of the theory of fuzzy sets where 
measurements are carried out in terms of the descriptive qualitative values which 
are then transformed to the quantitative form by the means of a given membership 
function assigning numbers to any word. 

To what extent is this transformation reliable? To what extent is man 
error-free? It is obvious that a person constructing the membership function 
performs approximately the same operation as when establishing the 
correspondence between the qualitative and the quantitative scales where the DM 
cannot evaluate the effect of small deviations in the estimates on the resulting 
comparison of the alternatives. The references to the check for sensitivity after 
quantitative measurements are of no avail. Indeed, in the presence of the multiple 
quantitative parameters the sensitivity check becomes an independent involved 
problem that can be solved only by eliciting from the DMs information that they 
hardly can provide. 

5.5.1.3 Comparative verbal probabilities 

Some experiments focus on the relationship between the language of measurement 
and the degree of indefiniteness of the events [8]. For example, the subjects were 
asked to estimate the chances of basketball teams to win in games between them. 
The experimenters noticed that in the case of an unknown team (higher 
indefiniteness) the experts were able to discriminate only two levels of verbal 
probabilities in comparative forms - for example, 'it is believed that the host 
always plays better than the guests' .. It is stated [8] that compelling people to 
quantify the probability estimates in the situations where only a few levels of 
indefiniteness can be discriminated can result in erroneous estimates. This example 
shows that some measurements can be carried out only in a verbal form with the 
use of the 'more probable than' relationships. Methodical studies of the comparative 
probabilistic estimates [11] demonstrated that the comparative probabilities are 
much more frequently used by the common people (both adults and children) than 
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quantitative estimates of the probabilities of events. The experiments used tasks 
such as the estimation of the probabilities of hitting the sectors of a rotating disk 
and estimating the winners in competitions and games. The authors of this work 
formulated six mathematical principles for comparative probabilities in the form of 
axioms representing the mathematical concept of the qualitative probabilities. The 
main experimental result obtained with adults and children above five is as follows: 
human comparisons follow completely the principles of the mathematical theory of 
the qualitative probabilities. The authors of this work conclude that the six 
principles provide a more reliable foundation for describing human behavior than 
the laws of the quantitative probability. 

5.5.1.4 Qualitative measurements 

We regard decision making in the unstructured problems as the domain of the 
human activity where quantitative (the more so, objective) means of measurement 
are not developed, and it is unlikely that they will appear in the future. Therefore, it 
is required to estimate the possibility of doing reliable qualitative measurements. 
Following R. Carnap, we turn to the methods of measuring physical magnitudes 
that were used before the advent of the reliable quantitative measurements. Before 
the invention of balances, for example, objects were compared in weight using two 
relationships - equivalence (E) and superiority (L), that is, people determined 
whether the objects are equal in weight or one is heavier than the other. There are 
four conditions to be satisfied by E and L [3]: 
I.E is the equivalence relationship, 
2.E and L must be mutually exclusive, 
3.L is transitive, and 
4.For two objects a and b either (i) a E b, or (ii) aLb, or (iii) b L a. 

One can easily see that the above scheme enables one to carry out 
relatively simple comparisons of the objects in one quality (weight). It is required 
here that all objects be accessible to the measurement maker (expert). 

Two more remarks are due. It is obvious that the thus-constructed absolute 
ordinal scale cannot have many values; otherwise, they will be poorly 
distinguishable by the measurement makers. To come to terms easier, it is required 
to identify commonly understandable and identically perceived points on the scale 
and explain their meaning in detail. Therefore, these scales must have detailed 
verbal definitions of the estimates (grades of quality). Moreover, these definitions 
focus on those estimates on the measurement scale that were emphasized by the 
persons constructing the scale (for example, they could be interested only in very 
heavy and very light objects). Thus, the estimates on the ordinal scale are defined 
both by the persons interested in one or another kind of measurement (in our case, 
it is the DM) and by the distinguishability of estimates, that is, the possibility of 
describing them verbally in a form understandable to the experts and the DMs. 

There is no reason to question the fact that before the coming of the 
reliable methods of quantitative measurement of the physical magnitudes, they were 
already measured qualitatively. Today, these methods could seem primitive because 
we have much more reliable quantitative methods. Yet, there is no doubt that the 
pre-quantitative (qualitative) methods of measuring physical magnitudes did exist. 
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When they were superseded by the quantitative methods, they were treated with 
negligence as something 'unscientific' and obsolete. The progress of physics gave 
rise to the well-known statement that the science appears wherever the number 
(quantity) occurs. To our mind, these declarations refer mostly to the natural 
sciences, but in the sciences dealing with human behavior qualitative 
measurements were and will be the most reliable. 

5.5.1.5 How to measure 

For the conclusion, we could put the following requirements to human 
measurements in decision processes. 
1. The measurements must be made in a language that is natural to DMs and their 
environment. 
2. In the case of quantitative variables (criteria) it is preferable to use discrete scales 
with the evaluations representing some intervals meaningful for "measurement 
makers". 
3. In the case of qualitative measurements the ordinal scales with verbal evaluations 
are the best way of measurement. 
4. For the cases with big uncertainty the comparative verbal measurement (better, 
worse and so on) are the most correct way of receiving information from human 
beings. 

In the general situation, one could take as the output of measurement 
process the discrete evaluations on criteria scales. Very often such evaluations have 
verbal labels or verbal descriptions. 

5.5.2 Information elicitation for the construction of a decision rule 

The next problem after the measurements is the construction of the decision rules 
for the evaluation of the alternatives. The problem for the DM is to construct the 
decision rules using the kind of criteria evaluations described above. 

The operations performed by the DM in the process of constructing the 
DM's decision rules are to be psychologically correct. We shall differentiate 
between two types of measurements. We discussed above measurements of the main 
factors influencing the decision. We shall refer to them as the primary 
measurements. In some normative methods, the primary measurements suffice for 
reaching the final decision. In the method of the subjective expected utility, for 
example, the quantitative measurement of the utility and subjective probability 
allows one to calculate the expected utility of every alternative. 

Yet, for a large majority of the normative methods this is insufficient, and 
some cognitive operations of the information elicitation are needed to construct a 
decision rule. We will call them the secondary measurements. For example, one 
needs to measure weights of criteria to decide whether the utility function is 
additive or multiplicative [16]. 

Analysis of the different normative techniques enables one to distinguish 
three groups of the information processing operations such as operations with 
criteria, operations with the estimates of the alternatives by criteria, and operations 
with the alternatives. Let us refer to an operation as elementary if it is not 
decomposable into simpler operations over to the objects of the same group, that is, 
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to criteria, alternatives, and alternative estimates by criteria. 
In the survey [26] the results of psychological experiments demonstrating 

the validity of different cognitive operations used in the decision methods were 
collected. Below is a group of the information processing operations which are 
admissible from the psychological point of view for the construction of a decision 
rule [26, 30]. 
1. Ordering criteria by importance. 
2. Qualitative comparison of two estimates taken from two criteria scales. 
3. Qualitative comparison of the probabilities of two alternatives. 
4. Attribution of alternatives to decision classes. 
5. Comparison of two alternatives viewed as a set of estimates by criteria and 
selection of the best one. 
6. Comparison of two alternatives viewed as something whole and selection of the 
best one. 
7. Determination of a satisfactory level by one criterion. 

Let us note that the operations 4 and 5 are admissible in some limits 
defined by the parameters of a problem. For the operations 6 and 7 we do not have 
enough of the psychological research demonstrating the validity of the operations, 
it is a preliminary conclusion. 

The admissible operations, reduce to qualitative comparisons (of the type 
"better", "worse", "approximately equal") of criteria, pairs of estimates on two 
criteria scales, holistic images of alternatives. Also, we may assign satisfactory 
values, exercise a simple decomposition of criteria, alternatives. Given a relatively 
small number of the criteria, we may compare two alternatives. With a not too big 
number of criteria, decision classes, and estimates on scales we may assign 
alternatives to the decision classes. All this together seems to be an essential 
constraint for a researcher working on the prescriptive [2] techniques. But 
psychologically valid methods give the reliable output. To avoid the gaps between 
normative and descriptive only a psychologically correct operation of the 
information elicitation are to be used. 

5.5.3 Consistency test 

One of the inherent characteristics of human behavior is proneness to error. In 
transmitting and processing information, people make errors. They make less and 
sometimes considerably less errors when using the psychologically valid 
information elicitation procedures, but all the same they do make errors. The latter 
may be caused by the distraction of human attention, a person's fatigue, or other 
reasons. 

Errors are observed both in practice and in psychological experiments. 
They differ essentially from the human errors in psychometric experiments which 
are known to follow the Gauss law and have the greater probability for the greater 
deviations from the true value. The human errors in the procedures of the 
information processing are of a different nature. For example, our studies of the 
multicriteria classification demonstrated that in the problems of small dimension 
(which are simple for man) gross errors leading to many contradictions are rare -
1 or 2 out of 50 cases [25]. These errors are obvious. Errors of the same kind are 
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met when comparing pairs of the estimates by the criteria, ranking criteria, etc. 
Stated differently, man can once and again commit essential errors. Therefore, the 
information elicited from man must be validated and not used uncontrollably. 

In other words, an individual can make unavoidable errors from time to 
time. Hence, information obtained from a person must be subject to verification, 
rather than to be used uncontrollably. 

How to check the information for consistency? 
The efficient methods are so-called closed procedures [20, 30] under 

which the earlier collected information is subject to an indirect rather than direct 
test. The questioning procedure is built so that the questions are duplicated, but the 
duplication is exercised implicitly, through other questions logically associated with 
the former. 

The following closed procedure was first suggested for the method 
ZAPROS [20]. Let there be Q criteria with ordinal scales and a small (2-5) number 
of estimates. It is required to order the estimates of all criteria, that is, to arrange 
them on the joint ordinal scale. To this purpose, it was suggested to perform pair
wise comparisons of the criteria scales. 

All 0.5Q(Q-l) pairs of criteria were pair-wise compared, which enabled a 
rather reliable validation of the DMs' information. We note that as the number of 
criteria (hence, the complexity of the problem) increases, the potential amount of 
the redundant information generated by this comparison increases as well. A closed 
procedure of this type has been employed to advantage in the ZAPROS method. 

Note that pinpointing a logical inconsistency should not lead, in general, 
to the automatic exclusion of an error but to the creation of the premises for a 
logical analysis. 

The decision methods must incorporate means for checking the DM's 
information for consistency. No matter what method is used to elicit information 
from DMs, one must be aware of the possibility of occasional errors and of the 
stages of the DM training. In this connection, the procedures for checking the 
elicited information for consistency are required, as well as the methods for 
detecting and eliminating contradictions in the DM's information. 

The need for consistency checks is not eliminated by the psychologically 
correct methods of the information elicitation from the DM's. This checking is 
extremely important because it improves the efficiency of the training and compels 
the DMs to recognize their errors and work out a reasonable compromise. 

5.5.4 Learning procedures 

As was noted above, learning is a part of human behavior. It is one of the inherent 
properties of human behavior, and the trial-and-error approach is the most 
characteristic human feature. Learning involves the study of a multicriteria problem 
and gradual working out of the DM's policy (decision rule). 

One can hardly expect that the needed information is just stored in human 
minds until elicited [52]. Despite the fact that such expectations were not made 
explicitly, they were implied. Indeed, in many decision methods people are required 
to give immediately all parameters of the decision rules. It can hardly be expected 
that at the initial stages of the decision making an individual can define sensibly 
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and consistently the decision rule. It can be assumed that an experienced DM 
(especially, that who dealt previously with such a problem) has some elements of 
the policy such as a (possibly incomplete) list of criteria, comparative importance of 
some criteria and estimates, etc., but usually all this is specified in the course of the 
decision making where all tradeoffs are defined. 

To allow the human ability of learning to manifest itself, the decision 
method must comprise special procedures for a gradual, rather than instantaneous, 
working out of the DM's policy. These procedures must allow the individuals to err 
and correct themselves, to work out partial compromises, and go on to the next 
ones. This process must allow the individuals to challenge their own decisions and 
return to the beginning. 

5.5.5 Possibility to receive explanations 

From a behavioral point of view, one of the requirements for any method is 
explainability of its results. The DM making a responsible decision would like to 
know why alternative A is superior to B and why both are superior to C. This 
requirement is quite legitimate. The stages of the information elicitation from the 
DM (measurements) and presentation of the final results are separated by the 
information's transformation. Understandably, the DMs want to make sure that the 
assessments of alternatives are based, without any distortion, precisely on their own 
preferences. To meet this requirement, the decision method must be 'transparent,' 
that is, allow one to find the one-to-one correspondence between the DM's 
information and the final evaluations of the alternatives. 

The DMs must have an opportunity to check whether there is a 
correspondence between the resulting estimates of the alternatives, on the one hand, 
and their own preferences, on the other hand. This check allows the DMs to make 
sure that it is precisely their preferences that uniquely define the results of using 
this method. Consequently, the DM must get explanations from the method in an 
understandable language. Only after that DM can receive the feeling of power in 
the hands and would like to use the results of the analysis. 

5.5.6 New decision methods adapted to human behavior 

The requirements formulated above create the possibility to develop new decision 
methods adapted to known features of human behavior. 

First, the statement of a multicriteria decision problem in an organization 
gives the chance to make a step forward from the usual satisfactory behavior. It was 
demonstrated in many practical cases of the multicriteria decision methods 
application: the choice of a pipeline route [34], the location of an airport [16]. 

Second, the utilization of the ways of measurements adapted to the human 
information processing system gives the possibility to justify the decision methods 
from the psychological point of view. Using the natural language strongly increases 
the chances of a successful practical implementation. 

Third, new methods of the decision rules' construction reduce the load on 
the human short-term memory and give the chances to reduce significantly the 
number of human errors, contradictions, biases. 

Fourth, the special procedures for checking the information and 
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eliminating the contradictions give the decision methods the new quality of the 
reliable tools. 

Fifth, the process of a gradual development of a decision rule gives the 
DM the time for learning, for careful development of a compromise between the 
criteria. 

Finally, the possibility to get an explanation increases the chances for a 
successful implementation of the multicriteria decision analysis. 

5.6 PRACTICAL IMPORTANCE OF BEHAVIOR ISSUES 

How important are the requirements given above for the practice? How big is the 
influence of the incorrect measurements and human errors on the possibility to get 
a practically valid output of a decision method? Are behavior issues important only 
for theoretical reasons or do they define the practical value of the decision analysis? 

The partial answers to these questions are provided by the results of the 
comparison of three decision aiding methods implemented as decision support 
systems. One of them was the method of the Verbal Decision Analysis -ZAPROS, 
satisfying the requirements given above [21, 29]. 

5.6.1 The decision problem 

The experimental study was done to compare three methods of the decision making 
[28]. The subjects were college students nearing graduation, which were in a job 
search process, facing opportunities similar to those given in the study. 

Let us suppose that a college graduate has several offers (after interviews) 
and he (or she) is to make a decision. These jobs are very similar in quality (that is, 
every variant is acceptable, but of course, one variant is better upon one aspect and 
the other - on the other). So, the student has to present this task as a multicriteria 
problem and try to solve it with the help of an appropriate multicriteria method. 

Four criteria are used as the focus of the study: salary, job location, job 
position (type of work involved), and prospects (career development and promotion 
opportunities). The following alternatives were used: 

FIRM SALARY JOB LOCATION POSITION PROSPECTS 
al $30 000 Very attractive Good enough Moderate 
a2 $35 000 U nattracti ve Almost ideal Moderate 
a3 $40 000 Adequate Good enough Almost none 
a4 $35 000 Adequate Not appropriate Good 
a5 $40 000 U nattracti ve Good enough Moderate 

It is easy to note that in this case there are three possible estimates upon 
the scale of each criterion. The greater the salary the more attractive an alternative 
would be to a rational subject. Thus, we have four criteria with three possible values 
each and the values of each criterion are rank-ordered from the most to the least 
preferable one. 

It is evident, that there are no dominated alternatives. Therefore, the 
comparison of these alternatives required some value function, which would take 
into account the advantages and disadvantages of each alternative upon each 
criterion. 
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5.6.2 Two decision support systems based on numerical measurements 

Two decision support systems based on the Multiattribute Utility Theory 
("MAUT') [16, 17] were used for the solution of the problem given above. These 
systems are LOGICAL DECISION [44] and DECAID [36]. The third DSS was one 
based on the Verbal Decision Analysis (see below). 

Both decision support systems LOGICAL DECISION and DEC AID were 
used to solve this task. Both systems implement ideas from multiattribute utility 
theory, providing possibilities for the construction of an additive utility function for 
the case of the risky decisions, and an additive value function for a decision making 
under certainty. In our study, we used only additive value functions. 

The value function obtained from both systems would therefore have the 
linear additive form of the weighted sum of the criteria estimates. The coefficients 
of importance for the criteria (the weights of importance) are used. 

Both systems are easy to use, have a flexible dialogue and graphical tools 
to elicit the decision maker's preferences. 

The main difference in the systems (besides interface) is the way of the 
determination of the numerical values for the evaluations upon separate criteria. In 
DECAID a pure graphical (direct) estimation is used (a point on the line of the size 
1). In LOGICAL DECISION there is a possibility to use a special function for the 
criterion values. To determine the parameters of this function it is enough to mark 
the "middle" value for the criterion (sure thing for a lottery with 50% possibility for 
the best and the worst estimates). 

The criteria weights are also defined in a different manner in these two 
systems. In LOGICAL DECISION criteria weights are defined on the basis of the 
trade-offs in a rather traditional way [17]. In DECAID weights are elicited directly 
(in a graphical way - point on a line), though the system provides also the 
possibility to make trade-offs, but after that the result is presented as points on the 
lines. 

Taking into account the commonness of the approach implemented in both 
systems and also the similarity of the information, received from the DM in the 
process of the task solution, one could suppose that the attempt to solve the above 
described task with the help of these systems must lead to very close results. 

5.6.3 Decision support system ZAPROS 

The third DSS is one from the family of Verbal Decision Analysis [29]. Only verbal 
measurements are used on all stages of this method. ZAPROS uses ranking rather 
than rating information, but the additive overall value rule is correct if there is an 
additive value function. In ZAPROS the additive rule does not provide the 
summation of the verbal estimates, but rather the means of obtaining a pair-wise 
compensation between the components of the two alternatives. 

For the preference elicitation from the subjects the following procedure 
was used. 

Subjects were asked to compare several specially formed alternatives by 
pairs. For each pair two alternatives differed on evaluation according to two criteria 
only (one evaluation was best for each alternative) and had equal evaluations (best 
or worst) on other criteria. 
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For the task presented above it was necessary for the subjects to compare 
the pairs of the alternatives different on each pair of the four criteria. The example 
of a typical question is: 

"What do you prefer: the firm giving salary $ 40 000 with an adequate 
location or the firm giving salary $35 000 with a very attractive location? Please, 
take into account that on the criteria "Position" and "Prospects" both firms are 
good". 

Comparing these alternatives, subjects were to choose one of the following 
responses: 
1. alternative 1 is more preferable than alternative 2; 
2. alternative 2 is more preferable than alternative 1; 
3. alternatives 1 and 2 are equally preferable. 

The implementation of a such simple system for the comparison of the 
pairs of the alternatives gives us a possibility for a simple check of the received 
comparisons on the basis of transitivity. 

The method provides a verification of the received comparisons for the 
transitivity and allows to change some of the responses on the request of the user to 
eliminate the intransitivity. It also guarantees that the comparison of each pair of 
the alternatives from this set is supported by at least two responses of the user. 

Let us note that such a way of the preference elicitation is psychologically 
valid (see above). The received information allows one to build joint ordinal scale 
combining all evaluations on the separate criteria scales. The joint ordinal scale 
provides the possibility for the construction of a partial ranking for every given set 
of the alternatives. 

Thus, this rank-ordering may be used for the comparison of the initial five 
alternatives because in our task the additive value function is supposed to be the 
right one and the criteria were formed to be preferentially independent. This 
algorithm does not guarantee the comparison of all alternatives because for some 
pairs of the alternatives ZAPROS gives only the incomparability relation. 

5.6.4 The comparison of three decision support systems 

Each subject from the group used all three DSS for the solution of the problem 
presented above. The difference in the outputs of the methods consisted in 
following: some pairs of the alternatives have not been compared with the ZAPROS 
method. Simple method of the preferences elicitation used by ZAPROS gave no 
possibility (in general case) to compare all given alternatives. ZAPROS gave only a 
partial ranking of the alternatives. 

In contrast to it, two other methods give the complete ranking for the 
given alternatives. Also, LOGICAL DECISION and DECAID gave numerical 
values of the utility for all alternatives. 

The results of the experiment were analyzed in a different form: the 
ranking of the given alternatives, the ranking of the specially formed alternatives 
used in ZAPROS, the ranking of the criteria weights and so on. 

First of all, it was found that the correlation between the outputs of 
LOGICAL DECISION and DECAID was very low. The ANOV A test demonstrated 
that for the group of subjects the outputs of LOGICAL DECISION and DECAID 
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have not been statistically significant in the measurements of the criteria weights 
and the ranking of the alternatives. 

The following results were very interesting: the outputs of the pairs 
LOGICAL DECISION-ZAPROS and DECAID-ZAPROS were correlated and were 
significantly correlated. It means that only for the alternatives compared by 
ZAPROS the relations were essentially the same. 

It is possible to give the following explanation of the results. 
The alternatives that could be ordered by ZAPROS are in the relations 

closed to the ordinal dominance. Such relations are more stable. Moreover, they 
were constructed in a very reliable way: verbal measurements psychologically 
correct way of preference elicitation, a possibility to check information and 
eliminate contradictions. 

Two complete orders constructed by LOGICAL DECISION and DECAID 
were based on the numerical measurements and the weighted sum of the 
alternatives estimations by criteria. The difference in the utility (even small) 
defined the final order of the alternatives. The errors (even small) made by people 
while performing numerical (primary and secondary) measurements resulted in 
quite different orders of the alternatives. 

5.7 CONCLUSIONS 

The fact that a DM can not perform some cognitive operations in a reliable way is 
very important. It is the starting point for the development of a new decision theory 
where behavioral issues play at least the same role as the mathematical ones. 

This new theory is needed not only for the decision analysis. The 
economists still believe in the myth of the existence of a rational person who 
behaves like a robot in the mathematical models of economics. But the facts 
demonstrate that consumers' behavior is far from rational [10]. The same is true for 
investor's decisions. 

Behavioral issues are very important for political science [7]. We witness 
many errors made by leading political figures in different countries. Some such 
errors are difficult to explain. But a lot of them could be explained by the behavior 
factors. To describe how politicians make decisions, to help them choose the better 
strategies one must take into account knowledge about human behavior. 

The reason of gaps between prescriptive and descriptive is basically the 
lack of the joint work between psychologists and sociologists engaged in the 
behavior research and mathematicians developing normative methods. The 
members of different research communities have different goals that generally do 
not coincide. Only joint multidisciplinary work could change the situation. 

The understanding of the importance of research directed to the 
elimination of the gap between normative and descriptive is constantly increasing. 

It is a good sign, the sign of the formation of a new image for the decision 
theory. New multidisciplinary research will give the important theoretical and 
practical results. 
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LOGICAL DECISION-ZAPROS and DECAID-ZAPROS were correlated and were 
significantly correlated. It means that only for the alternatives compared by 
ZAPROS the relations were essentially the same. 

It is possible to give the following explanation of the results. 
The alternatives that could be ordered by ZAPROS are in the relations 

closed to the ordinal dominance. Such relations are more stable. Moreover, they 
were constructed in a very reliable way: verbal measurements psychologically 
correct way of preference elicitation, a possibility to check information and 
eliminate contradictions. 

Two complete orders constructed by LOGICAL DECISION and DECAID 
were based on the numerical measurements and the weighted sum of the 
alternatives estimations by criteria. The difference in the utility (even small) 
defined the final order of the alternatives. The errors (even small) made by people 
while performing numerical (primary and secondary) measurements resulted in 
quite different orders of the alternatives. 

5.7 CONCLUSIONS 

The fact that a DM can not perform some cognitive operations in a reliable way is 
very important. It is the starting point for the development of a new decision theory 
where behavioral issues play at least the same role as the mathematical ones. 

This new theory is needed not only for the decision analysis. The 
economists still believe in the myth of the existence of a rational person who 
behaves like a robot in the mathematical models of economics. But the facts 
demonstrate that consumers' behavior is far from rational [10]. The same is true for 
investor's decisions. 

Behavioral issues are very important for political science [7]. We witness 
many errors made by leading political figures in different countries. Some such 
errors are difficult to explain. But a lot of them could be explained by the behavior 
factors. To describe how politicians make decisions, to help them choose the better 
strategies one must take into account knowledge about human behavior. 

The reason of gaps between prescriptive and descriptive is basically the 
lack of the joint work between psychologists and sociologists engaged in the 
behavior research and mathematicians developing normative methods. The 
members of different research communities have different goals that generally do 
not coincide. Only joint multidisciplinary work could change the situation. 

The understanding of the importance of research directed to the 
elimination of the gap between normative and descriptive is constantly increasing. 

It is a good sign, the sign of the formation of a new image for the decision 
theory. New multidisciplinary research will give the important theoretical and 
practical results. 
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6-2 META DECISION PROBLEMS 

Abstract: The problem of selecting a method for solving an MCDM problem 
is dicussed. This problem called meta decision problem can be formulated and 
solved in different ways. The most common approach is to define it as a prob
lem of choosing one method from a finite set of methods which are evaluated 
according to several criteria. This leads to a formalization of the meta decision 
problem as an MCDM problem itself. Scalar evaluations of methods can help 
to avoid the meta decision problem becoming too complex. The problem of 
assessing the parameter(s) of an MCDM problem is similar to the meta deci
sion problem above and can be interpreted as the problem to design an MCDM 
method. This leads to a formalization of the meta decision problem as a scalar 
parameter optimization problem. Information for solving meta decision prob
lems can be submitted by a decision maker or is given as a data file originating, 
e.g., from prior decision making processes. Thus a meta decision problem can 
be solved in an interactive framework or through machine learning. 

6.1 INTRODUCTION 

The rapid growth of multiple criteria decision making (MCDM) since the first 
international conference in 1972 was accompanied by the evolution of different 
schools for solving complex decision problems with several objectives, goals, or 
criteria. Many methods based on different methodological assumptions have 
been proposed during this time. Chapters 8 - 12 of this volume survey the 
main schools or "philosophies" of MCDM. 

Before MCDM became an established field of research, a decision maker 
(DM) may have felt quite helpless being confronted with an MCDM problem 
because of a lack of methodological support. Today, he/she may have similar 
feelings as a result of there beeing too many competing approaches for solving 
his/her problem. These approaches are usually based on different assumptions 
about the decision maker and the decision problem, require different informa
tion for their application, and, of course, usually lead to different results. The 
DM might consider such an indefiniteness of the results as most disturbing. 

Although there have been long-standing debates concerning the "right" or 
"best" approach to MCDM which, especially, led to more or less relevant criti
cism on various methods (see below for details), there is no generally accepted 
foundation of a special school of MCDM or a specific method. On the other 
hand, there is an implicit universality claim of MCDM methods which means 
that these methods are usually proposed independently of the specific problem 
situation, without restrictions of their domain of application (other than tech
nical assumptions like the formal problem definition). It is then assumed that 
the method is able to handle any MCDM problem as long as it fulfils the formal 
requirements (e.g. finite set of alternatives, or: polyhedral set of alternatives) 
of such a problem. 

Let us mention just some examples of methodological criticism on MCDM 
approaches given in the literature: A valuable critical survey about several 
schools of MCDM is done by Stewart [60]. One of the most popular methods 
for finite MCDM problems, the analytical hierarchy process, has provoked an 
intensive methodological discussion: See, e.g., [4, 6, 12, 13, 30, 44, 60]. The 
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tion for their application, and, of course, usually lead to different results. The 
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most central aspect in this discussion is based on the phenomenon of rank
reversal which means that the inclusion of "irrelevant" additional alternatives 
may change the ranking order of the other alternatives. 

Goal programming, likely the oldest school of MCDM approaches developed 
in the 50s as an extension of linear programming [7], has also been critically 
discussed by several authors: See, e.g., [18, 52, 53, 72]. Some of the criticism 
concerns, for instance, special variants of goal programming like the lexico
graphic version. 

Utility theory for MCDM is criticized because of its "strict" assumptions 
which are usually not empirically valid (see, for example, [23, 63]) although this 
would not necessarily imply that they are not useful for a normative context 
as in MCDM. 

Outranking methods which are especially popular in France and Belgium are 
criticized, for instance, by Alley [1] and Stewart [60]. Alley ([1], see also [17]) 
points out the possibility of obtaining dominated solutions with the ELECTRE 
approach and considers the ranking process to be "a mystery to the DM." 
Stewart [60] supposes some outranking procedures to be "difficult to verify 
empirically as models of human preferences." Interactive approaches which 
seem to be the most popular way of dealing with MCDM problems cannot 
be criticized easily without considering the special concept they rely on (e.g., 
utility theory or a reference point approach). Larichev [34] (see also chapter 5) 
in his work took into account the human limitations in interactivity. 

6.2 WHAT IS A META DECISION PROBLEM IN MCDM? 

There is neither a strong reason to reject a particular school of MCDM nor a 
convincing argument to give general preference to one of the many methods. 
Therefore, it seems to be reasonable to accept a certain methodological plural
ism within MCDM.l The problem of method choice should instead be solved 
in the context of a given decision situation consisting of decision problem, de
cision maker, and various restrictions on the decision process, e.g., time limits 
or information costs. This problem of method choice is called a meta decision 
problem. 

The question of method choice can be formulated as a problem to select 
a method to solve an MCDM problem from a finite set of methods. Such 
a problem is treated, for instance, in the following studies: Buchanan and 
Daellenbach [5], Cohon and Marks [8], Gershon and Duckstein [16], Hobbs [25], 
Khairullah and Zionts [31], Ozernoy [45, 46], and Wallenius [65]. In Sections 
6.3 and 6.4 we will discuss the applicability of such an approach. Let us note 
that many papers dealing with the problem of plurality of MCDM methods do 
not formulate it as a method selection problem formally. Instead, judgements 
on different MCDM methods are compiled or comparisons of several MCDM 

1 For a general discussion on methodological pluralism within OR see Mingers [39] and Mingers 
and Brocklesby [40,41]. 
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approaches are provided (see, e.g., [2, 11, 19, 21, 38, 42, 58, 59, 62]). For 
instance, characteristic features of methods are pointed out, advantages and 
disadvantages of specific approaches are summarized, different assumptions of 
application are discussed, or characteristic features of solutions obtained with 
different methods are analyzed. 

Another possibility to formulate and analyze the meta decision problem is 
to consider the problem of method design, i.e., to choose an MCDM method 
from an infinite set of methods characterised by a parameter. From this more 
general point of view it is possible to analyze the question of method choice and 
the question of parameter assessment in an integrated approach. This approach 
is discussed in section 6.5. 

6.3 CRITERIA FOR METHOD EVALUATION AND SELECTION 

A straightforward approach for solving a meta decision problem is to formulate 
this question as a problem of selecting an MCDM method from a given set of 
methods. A first step in structuring this problem is to look for a criterion or 
several criteria for evaluating a method. The following subsections summarize 
possible criteria as discussed in the literature. 

6.3.1 Suitability for the problem type 

The chosen method must be able to handle problems of the given type. Of
ten, MCDM is subdivided into MODM (multiple objective decision making) 
and MADM (multiple attribute decision making). MODM considers problems 
with a continuous set of alternatives whereas MADM treats problems with a 
finite, usually small set of alternatives. Many methods can handle only one 
of these problem types. For instance, interactive approaches usually assume 
that an MODM problem is given whereas the AHP or outranking approaches 
are constructed for MADM. Several MODM methods assume that the set of 
alternatives is convex and that the objective functions are concave (in case 
of maximization). An important special case of MODM is MOLP (multiple 
objective linear programming) with a polyhedral set of alternatives and linear 
objective functions. 

Other problem types are such with discrete, integer or binary, stochastic or 
fuzzy decision variables. Extensions to dynamic problems, control problems, 
problems with uncertainty, incomplete information or qualitative criteria etc. 
have been proposed. For such special problem types usually only a few methods 
have been discussed in the literature such that the method selection problem 
is almost "solved" when a formally suitable method has been found at all. 
However, for the problem types discussed most often, like MADM, MODM, 
and MOLP, several formally suitable methods have been proposed such that 
considerations based on the problem type do not solve the method selection 
problem. 

However, let us mention that the differentiation between problem definition 
and method selection is an idealization. In practice the modelling of a problem 

6-4 META DECISION PROBLEMS 

approaches are provided (see, e.g., [2, 11, 19, 21, 38, 42, 58, 59, 62]). For 
instance, characteristic features of methods are pointed out, advantages and 
disadvantages of specific approaches are summarized, different assumptions of 
application are discussed, or characteristic features of solutions obtained with 
different methods are analyzed. 

Another possibility to formulate and analyze the meta decision problem is 
to consider the problem of method design, i.e., to choose an MCDM method 
from an infinite set of methods characterised by a parameter. From this more 
general point of view it is possible to analyze the question of method choice and 
the question of parameter assessment in an integrated approach. This approach 
is discussed in section 6.5. 

6.3 CRITERIA FOR METHOD EVALUATION AND SELECTION 

A straightforward approach for solving a meta decision problem is to formulate 
this question as a problem of selecting an MCDM method from a given set of 
methods. A first step in structuring this problem is to look for a criterion or 
several criteria for evaluating a method. The following subsections summarize 
possible criteria as discussed in the literature. 

6.3.1 Suitability for the problem type 

The chosen method must be able to handle problems of the given type. Of
ten, MCDM is subdivided into MODM (multiple objective decision making) 
and MADM (multiple attribute decision making). MODM considers problems 
with a continuous set of alternatives whereas MADM treats problems with a 
finite, usually small set of alternatives. Many methods can handle only one 
of these problem types. For instance, interactive approaches usually assume 
that an MODM problem is given whereas the AHP or outranking approaches 
are constructed for MADM. Several MODM methods assume that the set of 
alternatives is convex and that the objective functions are concave (in case 
of maximization). An important special case of MODM is MOLP (multiple 
objective linear programming) with a polyhedral set of alternatives and linear 
objective functions. 

Other problem types are such with discrete, integer or binary, stochastic or 
fuzzy decision variables. Extensions to dynamic problems, control problems, 
problems with uncertainty, incomplete information or qualitative criteria etc. 
have been proposed. For such special problem types usually only a few methods 
have been discussed in the literature such that the method selection problem 
is almost "solved" when a formally suitable method has been found at all. 
However, for the problem types discussed most often, like MADM, MODM, 
and MOLP, several formally suitable methods have been proposed such that 
considerations based on the problem type do not solve the method selection 
problem. 

However, let us mention that the differentiation between problem definition 
and method selection is an idealization. In practice the modelling of a problem 



META DECISION PROBLEMS 6-5 

as, for instance, a fuzzy problem is frequently the consequence of the availability 
of an appropriate method for handling such problems. If an appropriate method 
would not be available then the problem might be defined as a conventional 
(non-fuzzy) MCDM problem. In a similar manner convex MODM problems 
are occasionally linearized such that a theoretically and methodologically well
established MOLP problem can be analyzed. 

6.3.2 Criteria based on solution concepts 

If the DM has clear preferences concerning possible solution concepts which 
an MCDM method should apply, then the considered set of methods can be 
reduced to the feasible ones which fit his/her preferences. Some examples for 
such preferences: 

If the DM prefers the alternatives to be compared with a reference point, 
then, of course, a reference point approach would be appropriate; if the DM 
wishes to work with trade-offs between criteria (see, e.g., Cohon and Marks 
[8]), then a utility-based method might be better than, for instance, a reference 
point approach or an outranking method. 

Desired solution concepts may be aspiration levels, pairwise comparisons (of 
criteria and/or alternatives), interactivity or non-interactivity, the calculation 
of a complete ranking of alternatives, a classification of alternatives into groups, 
or the selection of a most preferred alternative, etc. 

Hwang and Yoon ([29], p. 211) propose a solution to the method selection 
problem for MADM based on using decision trees. Based on a hierarchy of 
questions the DM is asked whether he/she wishes certain method features. 2 

Then a proposal for method choice is made. Let us note that such an ap
proach usually does not solve the method selection problem uniquely when 
several methods belong to the same leaf of the decision tree. The features in 
question often correspond to method features such that a good methodological 
knowledge is required for the application of this approach. In practice, a DM 
might have difficulties to decide a priori whether, for instance, he/she prefers 
the articulation of pairwise preference to the articulation of pairwise proxim
ity. However, if such a DM with well-structured preferences on methodological 
features exists it would not make much difference to ask him/her directly for 
the most preferred method. 

If the choice of an MCDM method is considered there may be given a re
quirement for the method to fulfil certain assumptions of "rationality". The 
most important of such assumptions is that an MCDM method yields a non
dominated alternative as the most preferred solution.3 Such assumptions about 
the results calculated by an MCDM method usually help to reduce the set of 
feasible methods but they do not solve the method selection problem uniquely. 
In a more general context these and other properties can be used to measure 

2Por instance, the DM is asked whether optimizing or satisficing is desired, or whether pair
wise preference is preferred to pairwise proximity. 
3Although there may be reasons why this is not always necessary, see, e.g., [73]. 
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the "validity" of a method. The validity of a method is often defined by the 
(non-) respecting of transformations allowed by the criteria scale (see, e.g., 
[51)). Validity can also be interpreted in a descriptive context of application as 
correspondence between results of the method and observable phenomena (of 
a physical or socio-economic reality). 

This leads to another interesting criterion for evaluating a method: the pos
sibility to predict preferences. The idea behind this concept is that preferences 
on alternatives are assumed to be given a priori. An MCDM method is then 
applied to the problem. The differences between the method results interpreted 
as predicted preferences and the actual preferences are measured (see also sec
tion 6.5.2. for a formal elaboration of a similar approach). Frequently, this 
criterion oriented towards a descriptive application of MCDM is used as a sin
gle quality measure of methods (see, e.g., [9, 47, 55]). Khairullah and Zionts 
[31, 32) propose the prediction of the best alternative, and the prediction of a 
(complete) ranking order as criteria for method evaluation. 

Another scalar and quantitatively measurable criterion taking into consid
eration the solution concept is based on approximate solutions. For problems 
where it is not possible or too difficult to find an exact (efficient) solution4 the 
distance to an optimal solution can be measured to judge the methods. Daniels 
[10) uses such an approach where the distance is measured on the basis of an 
additive utility function. 

Usually, data about the decision problem, e.g., the objective functions or cri
teria evaluations of the alternatives, are not given precisely. The DM may also 
feel unsure about the preference information he/she has to assess. Therefore, 
the sensitivity of the solution calculated by the method should be quite robust. 

6.3.3 Implementation-oriented criteria 

In this group of criteria we consider characteristics of the method and its com
puter implementation. A typical software-oriented feature to judge an opti
mization method is its computing time. This can either be measured using 
concepts from complexity theory (see, e.g., [26, 71)) or performing practical 
tests where the actual computing time for typical problems is measured for 
different problem sizes. However, it should be noted that MADM problems as 
usually treated in literature consist of quite few criteria and alternatives, and 
the discussion of MODM avoids hard-to-solve nonlinear problems or degenerate 
linear problems which can cause computing difficulties (see Kruse [33), esp. p. 
36). Considering the power of modern computers as well, the criterion of the 
computing time does not seem to be relevant in most cases to the discussion of 
MCDM method selection. 

Instead the ease of use of a method is an important criterion for evaluating 
its application especially when non-experts have to deal with the method (see 

4This is the case, for instance, in scheduling problems where "multicriteria heuristics" are 
used; see [10]. 
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Stewart [60]). This is particularly relevant for methods which are at least in 
some respect interactive and which are developed for non-expert use. The 
design of the man-machine dialogue is essential to the success of an interactive 
approach. Today, it is generally important for software to be user-friendly. 
User-friendliness can be achieved, for instance, by the usage of a graphical user 
interface (as Windows), by easy data input (e.g. via mouse), and by providing 
help functions. 

Interactivity causes opportunity costs because it takes time and efforts for 
the DM to formulate the information he/she provides for the computer algo
rithm and to understand the information provided by the program. This aspect 
is measured frequently by the time needed for applying a method or the num
ber of iterations (see, e.g., [35]). The time required for interactions is often 
significantly longer than the time for the computation itself (see Buchanan and 
Daellenbach [5], p. 355). The costs of method application also depend on the 
difficulty for the DM to understand the method and what kind of information 
he/she has to provide. The logic of a method should therefore be transparent 
and the information required from the DM should be free from ambiguity (see 
Stewart [60]). 

It takes time for the DM to improve his/her understanding, or the quality 
of the results suffers or he/she gets frustrated when the transparency of a 
method is not good enough. The same holds when the information output by 
the method is not explicit enough, when it is unclear, incomplete, difficult to 
grasp, or simply when it does not seem to be useful. For instance, the DM may 
prefer an indirect assessment of weights by pairwise comparisons of criteria (as, 
for instance, in the AHP) rather than a direct assessment because he/she feels 
quite unsure about their meaning or specific values. Or it is the other way 
round if the DM feels quite sure about weight values and wishes to avoid the 
information overhead by pairwise comparisons. 

Another relevant aspect concerns the costs of implementing a method into 
an (institutionalized) decision process. This comprises the costs for self-imple
menting the computer software or for buying a ready-made or custom-made 
software, the cost for training the DM(s) or decision analyst(s) (DA) who are 
working with the software. The knowledge and the abilities of the DM have 
to be considered here as well as other aspects which are related to the de
cision environment when information costs for integrating a method into an 
institutionalized decision process have to be analyzed. 

6.3.4 Criteria depending on the specific decision situation 

In some of the studies on the meta decision problem it is, however, not clear 
whether a method evaluation takes place in the context of a given decision 
situation or not. A solution obtained without considering a specific decision 
situation would be obligatory for any DM and decision problem as long as the 
evaluations of the criteria in sections 6.3.1.-6.3.3. do not change. 

However, we believe that the appropriateness of an MCDM method for a 
specific decision situation is a key issue for its selection. A decision situation 
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consists of (1.) the decision problem, (2.) the decision maker, and (3.) various 
aspects of the decision process such as time limits, knowledge of the DM about 
different methods for MCDM, institutional restrictions, etc. Concerning the 
given decision problem it has to be judged whether the method can actually 
handle the problem. Problems might arise when the number of criteria, the 
number of alternatives, the number of model variables, or the number of re
strictions is too large. Considering typical problem sizes5 this does not seem 
to be a problem which really matters. 

The DM's or DA's understanding of MCDM methods is a very important 
issue. As Balesta and Tsoukias ([3), p. 422) note it is often possible that a 
method selection problem does not become evident because only one method 
is known and therefore preferred by the DM. Such ignorance can be thoroughly 
rational considering the costs of implementing methods into an institutionalized 
decision process, esp. the costs for learning to understand several methods. 

If the DM/DA understand more or less different methods then his/her pref
erences for a method may depend on the specific problem. For instance, the 
DM's preferences for interactions change from problem to problem depending 
on the available time and the importance of the problem. The availability and 
confidence in a prior preference structure may influence the method choice, or 
the plausibility of preliminary results of a method can influence the DM's pref
erence for that approach. The DM's confidence in a method can change from 
problem to problem and is subject to a learning process. 

Restrictions resulting from the specific decision process can be given by the 
available interaction time. Another resource restriction is possibly based on the 
costs of the decision process. The usability of a method for group decisions and 
other aspects of embedding it in a multi-person decision environment may be an 
essential feature for its choice. Institutional restrictions may require a method 
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best evaluation would be chosen. The formerly mentioned approaches based 
on a prediction of preferences usually use such a single criterion defined as 
an average error of prediction. The error definition is based on the aggregated 
differences between the method results interpreted as predicted preferences and 
the actual preferences. 6 Let us note that the prediction of preferences is a 
questionable criterion because it relies on a basically descriptive approach which 
is not necessarily a good foundation of prescriptive MCDM [9]. 

Another single criterion well-known from OR methods in areas where an 
exact solution cannot be calculated7 is based on approximate solutions. Fol
lowing this concept Daniels [10] evaluates "multicriteria heuristics" for discrete 
MCDM problems like scheduling. This analysis is based on an additive utility 
function which serves to measure the distance of an approximate solution to an 
efficient solution. 

In section 6.5.2. we discuss the application of a scalar criterion for solving 
the method design problem using machine learning. A general problem related 
to scalar definitions of the meta decision problem is, however, the acquisition 
of the necessary information, e.g. data of "true" preferences or data on ex
act solutions. These difficulties are discussed in more details in section 6.6. 
However, the approach of modelling the meta decision problem as an MADM 
problem discussed in the next section, leads to similar problems of information 
assessment. 

6.4.2 Method selection as an MADM problem 

Considering the alleged ubiquity of multiple criteria in decision problems (see, 
e.g., Zeleny [73], p. 1-11), it is not surprising that in many studies related to 
the MCDM method selection problem it is proposed that this problem should 
be formulated as a multicriteria problem itself. Different criteria which express 
features or qualities of methods relevant for the selection of one of them have to 
be considered. This approach is quite common and has already been applied in 
one of the earliest papers on method selection in MCDM, a study by Cohon and 
Marks [8]. Other papers on MCDM method evaluation or selection in which the 
problem is defined explicitly as an MCDM problem are, e.g., [16,25,45,46,49]. 

The multicriteria method selection problem can be formally defined as 

(6.1) optf(a) 

with 

(6.2) 

where A is a discrete set of MCDM methods, fk' k E {I, ... , q}, are criterion 
evaluation functions and opt means that the single criteria are either to be 

6See section 6.5.2. for a formal notation of such an approach. 
7E. g. for the travelling salesman problem and other problems in combinatorics whose exact 
solution would be too time consuming. 
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maximized or minimized. The problem can also be represented by a decision 
matrix Z E R1xq with Zij = h(ai),j E {l, ... ,q},i E {l, ... ,l}. 

Example 6.1: 
Gershon and Duckstein [16} present one of the most elaborate approaches to 

the problem of selecting an MCDM method from a finite set of methods. First, 
28 criteria for method evaluation are proposed. The criteria which are derived 
from characteristics of the specific decision situation (problem, method, DM) 
can be grouped into the following categories: 

- mandatory binary criteria 
- non-mandatory binary criteria 
- technique-dependent criteria 
- application-dependent criteria 
With the help of the binary criteria MCDM methods can be classified. The 

mandatory binary criteria, e.g. the property to choose among discrete and/or 
continuous alternatives, also serve to distinguish between "feasible" and "infea
sible" methods for a given MCDM problem. Among the non-mandatory binary 
criteria we find characteristics of specific MCDM methods, e.g. the property 
to use a reference point, or to apply pairwise comparisons of alternatives. The 
technique-dependent criteria comprehend the following: 

- computer time, 
- interaction time, 
- implementation time, 
- level of DM's sophistication required 
- consistency of results with those of other techniques 
- robustness to parameter value changes 
- applicability to group decision making. 
The application-depended criteria are, for instance, the number of criteria 

and alternatives, or the DM's understanding of MCDM methods. 
In an illustrative application Gershon and Duckstein propose first to reduce 

the set of these 28 criteria to the relevant ones which are 16 criteria in their 
example. For these criteria preference information, e.g. weights, has to be as
sessed. Then a set of alternative MCDM methods is determined. 13 methods 
are considered in their approach: A = {sequential optimization, weighting, (':
constraint, compromise programming, cooperative game theory, multiattribute 
utility theory, surrogate worth trade-off, ELECTRE, Q-analysis, dynamic com
promise programming, PROTRADE, STEP}. Infeasible alternatives are elim
inated by consideration of mandatory criteria. For the remaining alternatives, 
ai E A' = {compromise programming, cooperative game theory, multiattribute 
utility theory, ELECTRE, Q-analysis, STEP}, the quantitative evaluations, 
Zij,j E {I, ... , 16}, have to be assessed which might cause problems because of 
the non-quantitative and subjective character of some of the criteria. Finally, 
the problem of method selection is formally defined as an MADM problem .• 

If the problem of MCDM method selection is formalized as an MCDM prob
lem then it is straightforward to solve it with an MCDM method itself. The 
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question then, of course, is: Which of the many MCDM methods should be 
used for solving the meta decision problem? Ford, Keeney and Kirkwood [14], 
for instance, propose to use multiple attribute utility theory for method evalua
tion. Gershon and Duckstein [16] solve the MCDM problem of MCDM method 
evaluation with compromise programming. Depending on the preference as
sumptions different solutions of the method choice problem are obtained in 
their study. Ozernoy ([45]; see also [46]) proposes firstly to eliminate infeasi
ble methods (e.g. because of criterion scales) and, secondly, to evaluate the 
remaining approaches with "screening". A similar approach is proposed by Co
hon and Marks [8] who first exclude dominated alternatives (e.g. ELECTRE I 
in their example) and then evaluate the remaining alternatives verbally. 

The problem of choosing a method for method selection, a meta meta deci
sion problem, demonstrates the recursive character of the question concerning 
method choice. Analogously, meta meta meta ... decision problems can be 
analyzed. Since the solution of a meta meta decision problem influences the 
solution of a meta decision problem just as the solution of a meta decision prob
lem influences the solution of the original decision problem such questions have 
practical relevance. 8 Let us note that, usually, even in several of the papers 
where the meta decision problem is structured as a formal MCDM problem it 
is treated quite informally, i.e. without applying an MCDM method. The goal 
is usually to find an overall evaluation of methods which is, for instance, called 
"operational usefulness" by Stewart [60]. 

6.5 METHOD DESIGN 

A more general problem compared to the method selection problem is that of 
"optimal" design or construction of an MCDM method. If it is questionable 
whether an arbitrary method proposed in the literature (or given as software) 
is appropriate for a particular MCDM problem, then there is also no guaran
tee that a satisfying method can be found within a small finite and fixed set 
of MCDM approaches compiled from the literature. One might instead ask 
for a custom-made method designed or constructed for the particular MCDM 
situation. 

6.5.1 Parameter assessment in MCDM methods 

In most cases an MCDM method does not compute a solution automatically 
like a "black box" but requires additional information to solve a problem. Such 
information is used to determine one or several parameters of the method. 
The choice of a parameter serves to adapt an MCDM method to the deci
sion problem being analyzed. Typical examples of parameters utilized within 
MCDM methods are weights, achievement levels, threshold values, trade-offs, 
parameters for value scaling, ideal and anti-ideal points, parameters of utility 

8 Although a practical solution, i.e. with involvement of the DM, does not seem to be realistic. 
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functions, of preference functions, and other parameters. The problem of pa
rameter choice can be interpreted as an attempt to design an MCDM method 
appropriate to the decision problem, i.e. as a meta decision problem. 

This leads to a problem mostly not discussed in the context of method 
selection: How should the parameter(s) for a given method be determined? 
Usually, it is assumed that parameters are assessed directly or indirectly by the 
DM such that they reflect his/her preferences. Parameters are determined a 
priori or can be changed during the process of method application (interactive 
approach). 

Some methods or decision support systems (DSSs) for MCDM offer addi
tional help for assessing parameters. The analytic hierarchy process (AHP) 
[56) uses the idea of structuring the objectives hierarchically and comparing 
objectives of the same level and group pairwise. For q criteria of a given group 
of criteria (q2 - q)/2 relative importance values have to be assessed by the 
DM. They serve to calculate weights for the criteria of the group such that 
they can be aggregated additively to a single criterion assuming ratio scale 
measurement.9 Since the (q2 - q)/2 relative importance values include redun
dancy (assuming consistent preferences) deviations of the DM's inputs to the 
ideal values corresponding to the obtained weights can be used to calculate a 
consistency index. A high degree of inconsistency can lead the DM to revise 
the relative importance values articulated formerly or to perform more funda
mental changes of the problem definition such that improved results can be 
obtained by repeating the weight calculation. 

Several DSSs for MCDM offer a sensitivity analysis [15) for the parameter 
values of the implemented MCDM methods. These are, for instance, the SEN
SATO software developed by Rios Insua [50) and the PROMCALC software 
[37) implementing the PROMETHEE outranking method. SENSATO offers 
a sensitivity analysis of weights within a utility-based MCDM approach. The 
PROMCALC software also offers a sensitivity analysis of weights but within 
the PROMETHEE method where they have a completely different meaning. 
The other parameters to be assessed for PROMETHEE are not considered dur
ing the sensitivity analysis. Some available software packages for MCDM do 
not include any forms of sensitivity analysis at all. 

Within some interactive methods it is possible to revise the given parameter 
information. These methods usually work along the following scheme (see chap
ter 10): Depending on the DM's input a preliminary solution is calculated. If 
this result does not sufficiently correspond to the DM's preferences then he/she 
is encouraged and supported to change the parameter values such that a new 
preliminary solution can be calculated. This process continues until the DM 
is satisfied with the results. Some other interactive methods work by reducing 
the set of possible parameters (e.g. weights) and thus by reducing the set of 
reachable solutions. 

9Interval scale measurement is assumed in some modifications of the AHP. 
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6.5.2 A parameter optimization model 

Let us define a parameterized method with parameter p as follows: A method 
Mp with input in calculates an output out = fMp (in) = fM(in,p), e.g. a scalar 
value for each alternative, where M is an ordinary, non parameterized algorithm 
which calculates its result with two inputs, the problem and a parameter p. 
Below we distinguish two cases with different assumptions on the information 
processing of an MCDM method and thus with different interpretations of 
inputs in, outputs out, and reference outputs out*. 

The meta decision problem can be formulated as a scalar parameter opti
mization problem: 

(6.3) argminpEP dist(fM(in,p),out*) 
(in,out* )EO 

where P is an appropriate set of parameters lO , n is a finite training set con
sisting of pairs of example inputs in and corresponding reference outputs out*. 
dist is, for instance, based on quadratic differences or on a metrics defined on 
problem data types which fulfils dist(x,x) = O,dist(x,y) > ° for x i- yand 
dist(x,y) + dist(y,z) ~ dist(x,z) for all x,y,Z. 

If the MCDM method is used for evaluating each alternative separately 
then n consists of example alternatives a represented by their objective vec
tors, in = f(a), together with their (scalar or vector-valued) reference evalu
ations out* = y* E RUY The MCDM method calculates for each in (with 
(in,out*) E n) an evaluation fM(in,p) = y E R U assumed to be scaled as the 
reference evaluations. We can use the square of the difference of the reference 
and calculated alternative evaluations such that the problem (6.3) leads to a 
minimization of the quadratic error: 

U 

(6.4) dist(y, y*) = 2)y; - Yi)2. 
i=l 

Similarly a distance function dist can easily be defined by an lp metrics as 

U 

(6.5) dist(y,y*) = p 2:)yi - Yi)P. 
i=l 

The assumption that each alternative is evaluated separately can be dropped. 
In several MCDM methods, e.g., outranking methods, the AHP, or some ref
erence point approaches, the treatment of an alternative may depend on prop
erties of other alternatives. If the alternatives cannot be evaluated without 
the context of other alternatives then the axiom of independence of irrelevant 

lOUsually, the set of parameters is an infinite subset of a vector space. 
11 If scalar alternative evaluations are considered then u = 1. 
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alternatives does not hold. In our parameter optimization model the set of 
alternatives has to be evaluated as a whole. 

The input of the method then consists of an MADM problem, i.e. in is an 
MCDM problem (A, f) with a finite, feasible set of alternatives A and a vector
valued objective function f : A -* Rq. The output can also be interpreted as 
an MADM problem with one12 or several objective values for each alternative. 
We assume that the output is represented by a decision matrix out = Z' E 
R1xu. The quadratic difference to a reference output out* = Z* E R1xu can be 
obtained as 
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(6.6) dist(out, out*) = L L(Zhk - Z~k)2. 
h=l k=l 

The parameter pEP in (6.3) can be interpreted as an index which deter
mines a specific method, or as a parameter of a given method or as both, the 
type and parameter(s) of a method. Let us consider an example: Ramesh, 
Zionts and Karwan [49] who analyze the meta decision problem for interactive 
branch and bound methods in integer multiobjective linear programming in
troduce an additional parameter for combining two parameterized families of 
methods. In this way the meta decision problem is expressed as a method de
sign problem or a problem of choosing parameters from a continuous set. Two 
objectives for evaluating the methods are proposed: the minimization of ques
tions for the decision maker and the minimization of solution time. Using these 
criteria, different efficient alternatives (methods) are obtained as solutions of 
the meta decision problem. 

Another, more flexible framework allowing MCDM method design via pa
rameter optimization is based on neural networks. 13 A function calculated by 
such a neural network is controlled by parameters which are assessed by solving 
an optimization problem similar to (6.3), (6.4) through machine learning (see 
section 6.6.4.). Parameters of neural networks are weights of the connections 
between single neurons and neuron-specific parameters like threshold values. 
Also the structure or size of a neural network is occasionally expressed by pa
rameters. One of the most popular approaches are feedforward neural networks 
which allow approximation of arbitrary continuous functions. 14 Therefore, a 
neural network can learn to work like different MCDM methods depending on 
the training set n. 

Example 6.2: 
Wang [69] analyzes the capabilities of neural networks to approximate utility 

functions for solving MCDM problems. Apriori it is usually not clear what kind 

12This is the standard case of scalar evaluations. 
13See, e.g., [24, 43J for an introduction to neural networks. 
14 A proof of this property based on a theorem by Kolmogorov is given by Hornik, Stinchcombe 
and White [27J. 
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of utility aggregation model (additive, multiplicative, etc.) and what criterion
specific utility functions fit well the DM's preferences. The main idea with 
using a neural network is that a general structure is applied which can work 
like different utility models (or other MCDM methods). The specific design of 
the neural network is obtained by a learning process. For this a utility evalution 
of a small set of alternatives (training set) is required. 

Wang performs tests of the neural network model (feedforward network) 
using learning data obtained from a simulated DM who can perform utility 
evaluation of alternatives. The MCDM problem under consideration possesses 
3 objective functions. Four different utility functions are analyzed as models of 
the DM's preferences: 

1. additive utility function: 

U(h(a),h(a),h(a)) = O.5h(a) +O.3h(a) +O.2h(a) +E 

2. multilinear utility function: 

U(h (a), h(a), h(a)) = O.4h (a) + O.3h(a) + O.2h(a) + O.04h (a)h(a) 

+O.03h(a)h(a) + O.02h(a)h(a) + O.Olh(a)h(a)h(a) + E 

3. quadratic utility function: 

U(jl (a), h(a), h(a)) = h (a) + O.6h(a) + O.4h(a) - O.5Ji(a) 

- O.3f~(a) - O.2fi(a) + E 

4. polynomial-exponential utility function: 

U(h (a), h(a), h (a)) = O.5h(a)e3h (a)-3 + O.3fi(a)e212 (a)-2 

+ O.2fi(a)eh (a)-1 + E 

E is a (O,O.OOOl)-normally distributed random variable. 
For the learning process a set n consisting of randomly generated alternatives 

together with their evaluations according to the respective utility function is 
used. The resultant 10 test alternatives, together with their evaluations, are 
used for measuring the quality of the neural network after the training process. 
The learning process is based on a minimization of a training error of the neurral 
network according to (6.3) and (6.4). The parameters p to be optimized are 
weights of connections between neurons and neuron-specific parameters, i.e. 
threshold values. 

The results of Wang's experiments are the following: Neural networks are 
capable to approximate all analyzed utility functions quite well. Training and 
test errors are between 1.14· 10-4 and 4.77 . 10-4 . The best alternative is 
always predicted correctly. The obtained neural networks are small and also 
the training time is very good (except for the quadratic utility model) .• 

The results of such test applications of neural networks were in general quite 
positive. Of course, the function of other MCDM approaches than utility-based 
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concepts can be realized by a neural network computing architecture as well. 
The meta decision problem of method design can be approached by neural 
networks which are a well-established tool in areas like pattern recognition or 
data prediction. 

6.6 INFORMATION HANDLING 

If the meta decision problem for a given MCDM problem has to be solved, addi
tional information is required. It is possible to distinguish two different sources 
of such information: It is either "hidden" in the knowledge and preferences of 
the DM, or it is given in some explicit and articulated form, i.e. as a data file. 
Let us discuss these two sources of information in some detail. 

Several of the criteria as discussed in section 6.3. are not easy to measure. 
Some criteria like computation time can be objectively measured. Other crite
ria, e.g. the DM's understanding of a method, the ease of use or the usefulness 
of information provided by a method can be assessed only subjectively by in
terviewing the DM. Some criteria can be measured cardinally while others have 
an ordinal character. 

6.6.1 Internal information 

Frequently, the DM has some idea how a good solution of a decision problem 
might look like or how an appropriate method should work. This intuitive 
knowledge has to be articulated explicitly, e.g., in the form of preferences be
tween MCDM methods. Such implicitly available information can then be used 
for the choice of a method and/or its parameters. In a simple approach the 
decision maker chooses a method directly, usually from a given set of methods. 
Such an approach to method selection corresponds to an a priori articulation 
of method parameters (see, e.g., [28], p. 8). 

A more elaborate way of obtaining information relevant for decision mak
ing is to use the possibilities of a man-machine-dialogue. 15 The interactive 
approach allows to give the DM additional help to express his/her knowledge 
and preferences about the decision problem. So far no interactive DSS has 
been developped which specifically supports the acquisition and utilization of 
information for solving the meta decision problem in MCDM. If some software 
implementing several MCDM methods is available then it is easy for a DM to 
follow a trial and error approach to get to a method selection. The DM can 
"play" with different MCDM methods and find out which one might be most 
suitable to solve his/her MCDM problem in practice. With such a heuristic 
approach it is not necessary to assess criteria evaluations of the considered 
MCDM methods and to formalize the meta decision problem as in (6.1)-(6.2) 
or (6.3)-(6.6). 

15See chapter 10 of this volume. 
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6.6.2 Laboratory and computer experiments 

There are several studies based on experiments to get information on criteria, 
i.e. the values for Zij, for evaluating MCDM methods. Some of them are based 
on computer experiments simulating a DM's behavior when dealing with an 
MCDM method, e.g. assuming a given utility function [31, 32, 35). Other ex
periments compare and evaluate different methods used by "dummy" decision 
makers [5, 65). While computer experiments can consider objectively measur
able information only, the experiments with "dummy" DMs can also be used 
for assessing subjective information (based on DM's attitude) although it is in 
general not clear whether such information is intersubjectively valid. 

Usually, in both types of experiments the approach discussed in 6.4.2. is 
applied: A discrete set of methods is evaluated according to several criteria. 
In these studies the focus lies on interactive methods and the human attitude 
towards the man-machine dialogue. For instance, Wallenius [65] compares the 
GDF method, STEM, and an unstructured interactive approach according to 
six criteria. Four of them are ordinal and subjectively assessed by the method 
users. Buchanan and Daellenbach [5] perform laboratory experiments with 
four interactive multiobjective decision making techniques. Six criteria are 
used for evaluating the methods. Four of them are subjectively assessed by 
the DM while the other two are objectively measurable. Occasionally, the DM 
states seemingly irrational judgements on the methods. For instance, one of 
the "dummy" DMs remarks on the Zionts-Wallenius method: "I understand 
the logic; it's easy to use, but I don't like it." ([5), p. 357). This shows that 
the confidence in or preference for a method cannot easily be expressed even 
by usage of complex subjectively measurable criteria like the ease of use or the 
transparency of a method. 

6.6.3 External information 

An alternative to the information acquisition from a DM during the decision 
making process (for solving the meta decision problem) is to use information 
already articulated in an explicit way, i.e. given as a data file. Let us discuss 
some examples where such information might originate from. External data 
can be assessed objectively or subjectively. 

Three cases of such data can be identified: 
a) The data are based on the DM's preferences. The intention is to find a 

solution which corresponds best to the preferences of the DM. A finite, rela
tively small subset of the original set of alternatives or coming from a similar 
decision problem is evaluated by the decision maker. For instance, a utility 
function for this subset of alternatives is assessed. The DSS receives the data 
of the alternatives (criteria evaluations) together with their "scores" as input 
for learning. With this information the DSS learns the functional relationship 
(e.g. the utility function) between the alternative criteria and scores and, thus, 
the preferences of the DM. The complete set of alternatives can then be eval
uated with the learned function. Such an approach has been discussed, e.g., 
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by Wang [66, 67, 68, 69] and Wang and Malakooti [70] who use a feedforward 
neural network approach for learning. 

b) Data are taken from previous decisions for similar problems. If we con
sider a repetitive multicriteria decision problem which has formerly been solved 
without applying a formal MCDM approach then we can use records of these 
historical decisions for the learning process. For instance, from the historical 
decision problems we have obtained the data of the alternative sets together 
with evaluations of the single alternatives, or, at least, information about the 
most preferred (selected) alternative. In this case learning is oriented towards 
an adaptation to real, historical decision behavior, no matter whether it was 
"rational" or not. 

c) Objective data are defined by ex post results of previous decisions. In this 
case we consider a type of decision problem for which alternatives are charac
terized by multiple criteria a priori (prior to a decision). Expost (some time 
after a decision) objective knowledge about the quality of the alternatives or, 
at least, about the realized alternative(s) becomes evident. The functional rela
tionship between an alternative's criteria evaluations and a measure of quality 
constituted later on is not known (and possibly stochastically influenced). In 
such a decision framework the application of MCDM has a mainly descriptive 
character (see [57], p. 328). 

Examples of such decision problems are, for instance, the choice of a stock 
market investment where a quality measure is given by future stock prices. 
At present measurable criteria, e.g. the price earning ratio or chart-related 
ratios, are in practice used to give a vague indication of the possibly highly 
stochastically influenced future success of an investment. Other examples (see 
[57]) include, for instance, prediction of political election results, the prediction 
of currency exchange rates or oil prices, the forecasting of economic indicators 
or sports results. 

In these cases of application, data of alternatives together with an ex post 
measure can be used for learning method parameters. An adaptation to sim
ulate systems behavior is intended. The purpose of an MCDM method is to 
approximate a "hidden" relationship between measurable multiple criteria and 
a nonmeasurable ("not-at-this-time measurable") scalar criterion. MCDM can 
here be interpreted as a search for a descriptive theory or as a tool for sys
tem identification. In a similar manner, MCDM approaches sometimes fulfil 
prediction tasks or serve for simulation applications (see, e.g., [48,61]). 

No matter where the external information comes from, it constitutes a kind 
of "reference solution" for a method which can be exploited by machine learning 
as discussed in section 6.6.4. 

6.6.4 Machine learning 

In considering information costs (esp. costs of interactivity) in multiple crite
ria decision making, it seems worthwhile to examine the usage of information 
already available and given as a data file. Such data can be accumulated, for 
instance, in the context of repetitive decision situations. The utilization of infor-
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mation for adapting a method (or its parameters respectively) or DSS software 
to a given decision problem can be called machine learning. Machine learning16 

can be used to automate the decision process at least partially. Thus informa
tion usage can be regarded as an alternative concept to interactive knowledge 
acquisition and utilization discussed above. Learning can be interpreted as a 
way of approaching the meta decision problem in MCDM. 

The learning process (or training process) then takes place prior to the ap
plication process of the method. The meta decision problem is solved prior to 
the original decision problem. In [22] an object-oriented DSS framework is pro
posed which treats MCDM problems, methods, and meta (=learning) methods 
as coupled objects and solves the meta and the original decision problem by a 
recursive solution process. 

Learning methods can generally be used for assessing the parameters(s) of 
an MCDM method. Machine learning minimizes the "difference" between a 
solution calculated by a method and a "best" or reference solution. This "dif
ference" can be measured by a distance function, e.g. an lp metrics, defined 
on appropriate method outputs based on sample inputs (of the problem data 
type) and matching reference solutions. From a mathematical point of view this 
usually leads to a scalar nonlinear optimization problem as expressed in (6.1). 
Problems of this type can be solved with different algorithms, e.g. gradient 
approaches or evolutionary algorithms. 

The approach of utilizing learning for multiple criteria decision making is 
used in applications of neural networks to MCDM. A discussion of the signifi
cance of neural networks (feedforward layered neural networks) to MCDM can, 
for instance, be found in papers by Wang [66, 67, 68, 69], Wang and Malakooti 
[70], Malakooti and Zhou [36], and Hanne [20, 22]. Neural networks can be 
considered as parameterized MCDM methods. The parameters are threshold 
values of the single neurons and weights of connections between them. Also the 
structure of the network can be expressed as a parameter. In the literature dif
ferent learning algorithms for parameter assessment have been proposed. The 
most popular learning method for feedforward neural networks is the back
propagation algorithm (see [54]) which is based on a gradient approach. Other 
approaches are, for instance, based on evolutionary algorithms [22). 

6.7 CONCLUSIONS 

The meta decision problem in MCDM can be formulated as a method selection 
problem or as a method design problem. The method evaluation can be per
formed with respect to a single criterion or several criteria. The meta decision 
problem can be solved using information articulated by the DM or information 
given as a data file. The main alternatives of approaching the meta decision 
problem are to use an interactive framework or to apply machine learning. 

16 Aspects of machine learning in expert systems are not discussed here. For details concerning 
the application of artificial intelligence in MCDM see chapter 15 of this volume. 
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The approach of utilizing learning for multiple criteria decision making is 
used in applications of neural networks to MCDM. A discussion of the signifi
cance of neural networks (feedforward layered neural networks) to MCDM can, 
for instance, be found in papers by Wang [66, 67, 68, 69], Wang and Malakooti 
[70], Malakooti and Zhou [36], and Hanne [20, 22]. Neural networks can be 
considered as parameterized MCDM methods. The parameters are threshold 
values of the single neurons and weights of connections between them. Also the 
structure of the network can be expressed as a parameter. In the literature dif
ferent learning algorithms for parameter assessment have been proposed. The 
most popular learning method for feedforward neural networks is the back
propagation algorithm (see [54]) which is based on a gradient approach. Other 
approaches are, for instance, based on evolutionary algorithms [22). 

6.7 CONCLUSIONS 

The meta decision problem in MCDM can be formulated as a method selection 
problem or as a method design problem. The method evaluation can be per
formed with respect to a single criterion or several criteria. The meta decision 
problem can be solved using information articulated by the DM or information 
given as a data file. The main alternatives of approaching the meta decision 
problem are to use an interactive framework or to apply machine learning. 

16 Aspects of machine learning in expert systems are not discussed here. For details concerning 
the application of artificial intelligence in MCDM see chapter 15 of this volume. 
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Let us now reconsider some main questions related to these different ap
proaches for dealing with meta decision problems. In the literature, the meta 
decision problem is mostly treated (1.) as an MCDM problem and (2.) as 
a method selection (instead of a method design) problem. Both of these two 
assumptions involve some difficulties: 

1. The approach of formulating the meta decision problem as a method se
lection problem is mainly based on a small set of existing methods and neglects 
effective possibilities of adapting a method to a specific problem situation (e.g. 
by parameter assessment). 

2. The formalization of the meta decision problem as an MCDM problem 
demands the articulation of selection criteria which causes some problems in 
detail: Some of the evaluation criteria proposed in the literature have a classifi
catory character which allows, for instance, to distinguish suitable and unsuit
able methods but not to find a unique (meta) solution. Further, it is possible 
to distinguish objective and subjective criteria. Some of the objective criteria 
like computation time are usually not relevant considering today's computer 
power or costs and typical problem sizes. 

The subjective criteria which are more or less based on the use of interactive 
methods apply subjective judgements of the DM. These criteria are often ques
tionable, e.g. in terms of measurability (scales) or operationality. The problem 
of prejudices and knowledge of the method user also has to be considered. 

Some criteria are partially based on "descriptivity" or the adaptation to pos
sibly irrational "preferences". Similarly those approaches which are based on 
the prediction of preferences have to be regarded as questionable for prescrip
tive or normative approaches as in MCDM. Behind several subjective criteria 
there is the idea that the DM can evaluate MCDM methods. This means that 
it is assumed that a DM has some intuitive knowledge as to what a "good" 
method should look like or, more specifically, what the results of a "good" 
method should be. Interactivity is a way of utilizing this implicit knowledge. 

Last but not least, let us mention that occasionally prejudices on methods 
(predecisions for a method) may have a significant influence in the studies on 
the meta decision problem. Such influences can, for instance, be discovered in 
the considered set of methods, in the proposed selection criteria, and in the way 
of structuring the evaluation process, e.g. the applied (meta) MCDM method. 

The approach of formulating the meta decision problem as a scalar param
eter optimization problem (6.3) requires that training information consisting 
of example problems (alternatives) and corresponding reference solutions be 
given. This seems to be the main difficulty for applying this concept since 
often such information is simply not available or cannot be considered as a 
"good" standard for future decision making. 
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7-2 SENSITIVITY ANALYSIS IN MCDM 

7.1 INTRODUCTION 

In this chapter we deal with stability and sensitivity analysis in multiple criteria 
decision making. It aims to analyze qualitative and quantitative behavior of 
the optimal solution or the optimal value according to changes of parameter 
values included in the original optimization or decision making problem. 

We consider a family of parametrized multiple criteria decision making prob
lems 

(7.1) 
minimize !(x, u) = (/1 (x, u), h(x, u), ... , !p(x, u))T 
subject to x E X(u), 

where x is an n-dimensional decision variable, u is an m-dimensional parameter 
vector, !i(i = 1,2, ... ,p) is a real-valued objective function on Rn x Rm, X is a 
set-valued map from Rm to Rn which specifies a feasible decision set depending 
on u, and T denotes a transposed vector or matrix. Let Y be a set-valued map 
from Rm to RP defined by 

(7.2) Y(u) = {y E RP : y = !(x, u) for some x E X(u)} 

for each u E Rm. Y is regarded as the feasible set map in the objective space. 
In order to define a solution of the above problem we consider a partial order 

in the objective space RP induced by a pointed closed convex cone K with a 
nonempty interior in RP, where K is said to be pointed if K n (-K) = {O}. 
Though we may consider more general ordering (domination structure), we 
confine our analysis within the cone-induced ordering for simplicity. In the 
following we use the following inequality notations for vectors y, z E RP: 

(7.3) 
y ~K z if and only if z - y E K 
Y ~K z if and only if z - y E K \ {O} 
Y <K z if and only if z - y E intK. 

Generally K :J R~, which denotes the nonnegative orthant of RP, and in case 
of K = R~, we omit the suffix K for simplicity. 

We will define three kinds of cone minimal points based on the above in
equality relations. 

Definition 7.1: Let A be a set in RP. Then 
1) fj E A is said to be a K-minimal point of A if there exists no yEA such 
that y ~K fj. 
2) fj E A is said to be a properly K-minimal point of A if there exists a cone C 
such that fj is a C-minimal point of A, where C is a convex cone with C ::j:. RP 
and K \ {O} C intC. 
3) fj E A is said to be a weakly K-minimal point of A if there exists no yEA 
such that y <K Y. 

These points are also often called efficient, properly efficient and weakly 
~fficient, respectively, with respect to K. The set of all K-minimal, properly K
minimal and weakly K-minimal points of A are denoted by MinK A, PrMinKA 
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and WMinK A, respectively. Clearly 

(7.4) PrMinK A C MinK A C WMinK A 

and if A is a polyhedral convex set 

(7.5) PrMinK A = MinK A 

(see, e.g. Sawaragi et al. [33] Theorem 3.1.7). 
According to these solution concepts we can define the following three set

valued maps W, G and S from Rm to RP by 

(7.6) 

(7.7) 

and 

(7.8) 

for each u E Rm, respectively. These set-valued maps W, G and S are called 
the perturbation map, the proper perturbation map, and the weak perturbation 
map, respectively. They are extensions of the well-known perturbation function 
(marginal function) in usual scalar optimization. 

Moreover we may consider the set-valued map from Rm to Rn defined by 

(7.9) V(u) = {x E X(u) : f(x,u) E W(u)} 

by considering the set of all K -minimal solutions of the perturbed problem in 
the decision space. If the original problem is a multiobjective linear program
ming problem, we may focus on the extreme points (basic solutions) of the 
feasible polyhedral set. Hence we may deal with the set of all K -minimal basic 
solutions VE(u). 

Even in multiple criteria decision making problems, if the preference of the 
decision maker (DM) is represented by a scalar utility (value, or evaluation) 
function and if the DM is interested only in the best alternative which maxi
mizes this utility function, we may directly apply existing methods of stability 
and sensitivity analysis in ordinary scalar optimization (see e.g. Fiacco [8]) to 
this case. On the contrary, if we deal with the whole set of K-minimal points 
(efficient solutions), the aim of stability and sensitivity analysis becomes to 
investigate the qualitative and/or quantitative behavior of the set-valued maps 
defined above. This chapter is mainly devoted to the analysis in the latter more 
complicated case and several approaches will be introduced. Since the available 
space for this chapter is limited, some interesting results must be omitted. The 
author owes quite much to the very nice survey paper by Gal and Wolf [13] in 
completing this chapter as well as several referred papers. 
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The contents of this chapter are as follows. First in Section 7-2, sensitiv
ity in multiobjective linear programming is dealt with. Section 7-3 provides 
fundamental concepts of continuity and differentiation of set-valued maps as 
mathematical preliminaries. Section 7-4 is devoted to stability analysis, i.e. in
vestigation of continuity of the perturbation maps. We consider derivatives of 
the perturbation maps in Section 7-5. Sensitivity analysis using duality theory 
will be dealt with in Section 7-6. In Section 7-7 we concentrate on sensitivity 
analysis in the discrete multicriteria decision making. The last section provides 
some concluding remarks. 

Because of page limitation, all the proofs of the theorems, propositions and 
lemmas are omitted in this chapter and the reader is requested to see the 
references. 

7.2 SENSITIVITY ANALYSIS IN MULTIOBJECTIVE LINEAR 
PROGRAMMING 

This second section will be devoted to sensitivity analysis in multiobjective lin
ear programming. Sensitivity analysis in ordinary linear programming is quite 
popular and useful for postoptimal analysis (see, e.g., Gal [11]). Since we may 
concentrate on the basic solutions in the linear case, and the number of those 
solutions is finite, our main interest lies in knowing whether a nominal opti
mal basic solution remains optimal when parameters included in the problems 
change. Some results related to duality theory will be explained later in Section 
6. 

In this section we introduce the results given by Gal and Leberling [12,10]. 
Other interesting results can be found in Deshpande and Zionts [7], Hansen et 
al. [16], Antunes and Climaco [1] etc. (see the survey by Dauer and Liu [6]). 
We consider the following nominal multiobjective linear programming problem 
(the value of the parameter u is fixed at a certain nominal value): 

(7.10) 
maximize Cx 
subject to x E X = {x E Rn : Ax ~ b, x ~ O} 

where A E Rmxn (which denotes the set of all m x n matrices) and C E RPxn. 
Since" maximization" is considered in usual linear programming we follow this 
tradition in this section and hence the ordering cone is fixed as the nonpositive 
orthant. A feasible solution x is called efficient if there is no feasible x' such that 
Cx' ~ Cx. The set of all efficient basic solutions (i.e. efficient extreme points) 
of the problem is denoted by VE (or VE(U) when there exists a parameter u in 
the problem). Let x be an efficient extreme point of the above problem which 
is already determined. We assume in the following that no degeneration occurs 
and that X is compact. The basis associated with x is denoted by B and the 
set of the uniquely characterized corresponding basis indices is denoted by p. 
Let P be the set of all j E Ii such that for every j E P, there exists at least one 
Ykj > 0, where Ii is the complement of p and Ykj are elements of B- 1 A. Denote 
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by Yb j the current reduced costs associated with the ith objective function, i.e. 

(7.11) 

where ck is the part corresponding to the basis of the ith row of C and aj is 
the jth column of A. 

Gal and Leberling [12] called their sensitivity investigation postefficient anal
ysis or relaxation analysis and divided it into two parts: with respect to the 
objective functions and with respect to the right-hand side. 

7.2.1 Sensitivity analysis with respect to the objective function 

Now we assume that the objective function is perturbed, i.e. let 

(7.12) C(U) = C+CU 

where C is a constant p x n matrix and 

(7.13) 

is a diagonal matrix in which the main elements define a parameter vector 
U = (Ul, ... , up)T E RP. Denote by V(u) the set of all efficient solutions to the 
problem 

(7.14) 
maximize C(u)x 
subject to x E X = {x E Rn : Ax ~ b, x ~ O}. 

The task is then "Determine a region 0 C RP such that for all U E 0 the set 
V(u) remains equal to V(O)". 

To determine 0, i.e. to maintain B optimal, the dual feasibility condition 
must be satisfied, i.e. 

P 

(7.15) - L,YbjAi ~ 0 for all j E P 
i=l 

with a weighting vector A E R~ (the nonnegative orthant). Adding slack 
variables Sj, j E P and normalizing A by L:f=l Ai = 1, we have the following 
E-test (efficiency test, Gal [10]): 
for each j E P solve 

(7.16) 

minimize 
subject to 

Sj 
L:f=l Ybj(U)Ai + Sj = 0 for all j E P 
L:f=l Ai = 1 
Ai ~ 0 for all i = 1, ... ,p 
Sj ~ 0 for all j E p. 

Solving the above linear programming problem for each j E P and consid
ering some additional conditions (for details see Gal [10] or Gal and Leberling 
[12]) the critical region 0 can be obtained. 
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7.2.2 Sensitivity analysis with respect to the right-Hand side 

Next consider the following multiobjective linear programming problem with 
the perturbation in the right-hand side of the inequality constraint: 

(7.17) 
maxImIze ex 
subject to x E X(u) = {x E Rn : Ax ~ b(u), x ~ O} 

where b(u) b + Lu, where L is a constant m x q matrix and u E Rq is 
a parameter vector. As before, the set of all efficient solutions to the above 
problem is denoted by V(u). 

In order to proceed analysis Gal and Leberling [12] introduced an undirected 
graph generated by multiobjective linear programming problem ((MOLP) for 
short). 

Definition 7.2: An undirected graph 9 = (U, r) is said to be generated by 
(MOLP) if 
1) p E U if and only if B is an efficient basis (Le. a basis associated with an 
efficient basic solution), 
2) between two nodes p, p' E U there exists an arc if and only if the corre
sponding efficient points x, x' E X are efficient neighboring extreme points and 
the edge 

[x, x'] = {x E R n 
: x = ax + (1 - a )X', 0 ~ a ~ I} 

is included in the set of all efficient points. 
3) to each node p E U there is assigned at least one positive weighting vector 
A. 

Based on this definition, the task can be formulated as follows: "Determine a 
region n E Rq such that for all u E n the graph 9(u) = (U(uy, r(u)) generated 
by the perturbed (MOLP) with u remains the same as the graph generated by 
the nominal (MOLP), Le. 9(u) = 9(0) for all u E n". 

They proved the following theorem. 

Theorem 7.1: 9(u) = 9(0) if and only if 

(7.18) 

where the intersection is taken over the set of all extreme points of X. 

7.3 CONTINUITY AND DIFFERENTIATION OF SET-VALUED MAPS 

Throughout this section let F be a set-valued map (point-to-set map) from the 
m-dimensional Euclidean space Rm to the p-dimensional Euclidean space RP, 
namely a map from RTn to the power set 2w. Let 

(7.19) dam F = {x E R m 
: F(x):I 0}. 
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7.3.1 Continuity of set-valued maps 

In this chapter we use the most simple concept of continuity of set-valued 
maps which is defined in terms of the convergence of sequences (e.g. Aubin 
and Frankowska [4], Maeda [24] or Hogan [17], though the terms "closed" and 
"open" are used instead of "u.s.c." and "l.s.c.", respectively, in the last). Re
cently Rockafellar and Wets [32] are using the terms outer and inner semicon
tinuity instead. 

Definition 7.3: 1) F is said to be lower semicontinuous {l.s.c.} at a point 
x E Rm if {xk} C Rm, xk -+ x, y E F(x) imply the existence of an integer k 
and a sequence {yk} C RP such that yk E F(xk) for k 2: k and yk -+ y. 
2) F is said to be upper semicontinuous {u.s.c.} at a point x E Rm if {xk} C 
Rm, Xk -+ x, yk E F(Xk), yk -+ y imply that y E F(x). 
3) F is said to be continuous at a point x if it is both l.s.c. and u.s.c. at x. 
4) We say that F is l.s.c., u.s.c. or continuous on X C Rm if it has the respective 
property at every x EX. 
5) F is said to be locally bounded (or uniformly compact) near x if there is a 
neighborhood N of x such that the set UxENF(x) is bounded. 

These definitions can be rewritten by using the limit of a set-valued map. 
First define the distance function 

(7.20) d(y, C) = inf{11 z - y II: z E C} 

for a set C in Rm and a point y E Rm, where II y II denotes the Euclidean norm 
of a vector y. 

Definition 7.4: Let x E dom F. 
1) The set defined by 

(7.21) IimsupF(x) = {y E RP: limi!lfd(y,F(x)) = O} 
x~x x~x 

is called the upper limit of F when x -+ x. 
2) The set defined by 

(7.22) lim i!lf F(x) = {y E RP : IiII!. d(y, F(x)) = O} 
x~x x~x 

is called the lower limit of F when x -+ x. 

It is clear that 

(7.23) limi!lf F(x) C cl F(x) C limsupF(x). 
x~x x~x 

Similarly we can define the upper limit and the lower limit of a sequence of sets 
{Ck} C RP, i.e., 

(7.24) lim sup Ck = {y E RP : liminf d(y, Ck) = O} 
k~(X) k~(X) 
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(7.25) lim inf Ck = {y E RP: lim d{y,Ck
) = OJ. 

k-t= k-t= 

Proposition 7.1: Let x E dom F. 
1) F is u.s.c. at x if and only if 

(7.26) lim sup F{x k
) C F{x) 

k-t= 

for any sequence {xk} C dom F converging to x. 
2) F is l.s.c. at x if and only if 

(7.27) F{x) c liminf F{xk
) 

k-t= 

for any sequence {Xk} C dom F converging to x. 
3) F is continuous at x if and only if 

(7.28) lim inf F{xk
) = F(x) = lim sup F{xk

) 
k-t= k-t= 

for any sequence {xk} C dom F converging to x. 

7.3.2 Derivatives of set-valued maps 

Next we will consider derivatives of set-valued maps. For that purpose we first 
introduce the concept of the contingent cone ([4], or tangent cone [32]) to a set, 
which is commonly used in optimization and mathematical programming. 

Definition 7.5: Let A be a nonempty subset of Rm and v E cl A. The set 
TA{V) C Rm, defined by 

(7.29) T ( ") { R m 1· . f d{v + hv,A) O} 
A V = v E : Imlll = 

h-tO+ h 

is called the contingent cone to A at v. 

It is very convenient to note that vETA (v) if and only if there exist sequences 
{hd C int R+{the set of positive numbers) and {vk} C Rm such that vk -+ 
v, hk -+ 0 and v + hkVk E A for any k. This conditon is also equivalent to the 
following condition: there exist sequences {h k } C int R+ and {vk } C A such 
that vk -+ v and hk{Vk - v) -+ v. 

It is well known that TA{v) is a closed (but not always convex) cone. 
The graph of a set-valued map F from Rm to RP is defined by 

(7.30) graph F = {{x,y) E R m x RP: y E F{x)}. 

We define the contingent derivative of F in terms of the contingent cone to the 
graph of F. 
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Definition 7.6: Let (x, y) E graph F. The set-valued map DF(x, y) from Rm 
to RP defined by 

(7.31) graph DF(x, y) = TgraphF(X, y) 

is called the contingent derivative ([4] or graphical derivative [32]) of F at (x, y). 

The contingent derivative can be characterized in terms of sequences as 
follows: y E DF(x, y)(x) if and only if there exist sequences {hk} C intR+ and 
{(x\ yk)} C Rm x RP such that hk -t 0, (xk, yk) -t (x, y) and 

(7.32) 

or, equivalently, there exist sequences {hk} C intR+ and {(xk,yk)} C graph F 
such that (xk, yk) -t (x, y) and 

(7.33) 

Proposition 7.2: Let (x, y) E graph F. Then y E DF(x, y)(x) if and only if 

(7.34) Y E lim sup 
(h,x')-+(O+,x) 

Therefore the contingent derivative is the same as the Dini upper derivative 
(Penot [26]). We can also define the Dini lower derivative by replacing limsup 
by liminf in the above proposition as in the following definition. 

Definition 7.7: Let (x,y) E graph F. The set-valued map defined by 

(7.35) DLF(~ ~)( ) - I· . f F(x + hx') - Y x,y x - 1m In 
(h,x')-+(o+,x) h 

is called the Dini lower derivative of F at (x, y). 

Hence y E DL F(x, y)(x) if and only if, for any sequences {hk } C intR+ and 
{xk} C Rm satisfying hk -t O,xk -t x, there exists a sequence {yk} C RP such 
that yk -t y and y + hkyk E F(x + hkXk) for all k. 

It is obvious from the definitions 

(7.36) DL F(x, y)(x) C DF(x, y)(x) 

for any x E Rm. When the equality holds in the above relation, F is said to be 
Dini differentiable at (x, y). 

In addition to the contingent derivative, we may also define the following 
two derivatives. The former was introduced by Shi [34] as the TP-derivative. 
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Definition 7.8: Let (x, i)) E graph F. The set-valued map defined by 

PF(x,y)(x) = {y E RP: there exist sequences {hd C intR+ 
(7.37) and {(x\ yk)} C graph F such that 

hk -t 0, xk -t X, hk(Xk - x, yk - i)) -t (x, y)} 

is called the upper semi-derivative of F at (x, i)). On the other hand, the 
set-valued map defined by 
(7.38) 

pL F(x, i))(x) = {y E RP : for any sequences {hk} C intR+ and 
{xk} C Rm satisfying xk -t x and hk(Xk - x) -t x, 
there exists a sequence {(xkn, ykn)} C graph F 
such that hkn (ykn - i)) = y} 

is called the lower semi-derivative of F at (x, i)). Moreover, when pL F(x, i))(x) :I 
o for any x E Rm, F is said to be lower semi-differentiable at (x,i)). 

Before closing this section we provide a sufficient condition for the lower 
semi-differentiability. 

Definition 7.9: 1) F is said to be locally Lipschitz at x if there exist a neigh
borhood N of x and a positive constant M such that 

(7.39) F(x') C F(x) + M II x - x' II B for all x,x' EN 

where B is the unit ball. 
2) F is said to be upper locally Lipschitz at x if there exist a neighborhood N 
of x and a positive constant M such that 

(7.40) F(x) C F(x) + M II x - x II B for all x E N. 

Of course, if F is locally Lipschitz, then it is upper locally Lipschitz. 

Proposition 7.3: If F is locally Lipschitz at x, then it is lower semi-differentiable 
at X. 

7.4 CONTINUITY OF THE PERTURBATION MAPS 

Stability analysis in MCDM has been mainly conducted by discussing continu
ity of the perturbation map (Naccache [25], Tanino and Sawaragi [41], Luc [23], 
Penot and Sterna-Karwart [27], Todorov [42] etc.). In this section we consider 
continuity of the perturbation maps W, G and S mainly based on the author's 
results. The following sufficient conditions for the upper semicontinuity of W 
were obtained by Tanino and Sawaragi [38]. 

Theorem 7.2: The perturbation map W is u.s.c. at u if the following condi
tions are satisfied: 
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1) the map Y is continuous at u, 
2) W(u) = S(u). 

In order to guarantee the lower semi continuity, we need the following defini
tion. 

Definition 7.10: The set-valued map Y is said to be K-dominated by W near 
u if there exists a neighborhood N of u such that 

(7.41) Y(u') c W(u') + K 

for any u' E N. 

Theorem 7.3: The perturbation map W is l.s.c. at u if the following conditions 
are satisfied: 
1) the map Y is continuous at u, 
2) Y is locally bounded near u, 
3) Y is K-dominated by W near u. 

We also obtain the following results concerning the continuity of the proper 
perturbation map and the weak perturbation map. 

Theorem 7.4: The proper perturbation map G is u.s.c. at u if the following 
conditions are satisfied: 
1) the map Y is continuous at u, 
2) G(u) = S(u). 

Theorem 7.5: The proper perturbation map G is l.s.c. at u if the following 
conditions are satisfied: 
1) the map Y is continuous at u, 
2) Y is locally bounded near u, 
3) Y is K-closed (Le. Y(u) + K is a closed set) near u. 

Theorem 7.6: The weak perturbation map S is u.s.c. at u if the following 
conditions are satisfied: 
1) the map Y is continuous at u. 

Theorem 7.7: The weak perturbation map S is continuous at u if the following 
conditions are satisfied: 
1) the map Y is continuous at u, 
2) the map Y is locally bounded and closed-valued near u, 
3) W(u)=S(u). 

The continuity of Y is, of course, closely related to the continuity of X and 
f. 
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Proposition 7.4: 1) If the map X is u.s.c. at u and locally bounded at u and 
if the function f is continuous on X (u) x {u}, then the map Y is u.s.c. at u. 
2) If the map X is l.s.c. at u and ifthe function f is continuous on X(u) x {u}, 
then the map Y is l.s.c. at u. 

Moreover, if X (u) is defined by inequality constraints as 

(7.42) X(u) = {x E R n
: gj(x,u) ~ 0, j = 1, ... ,I} 

sufficient conditions for its continuity are given as follows (Hogan [17]). 

Proposition 7.5: 1) If each gj(j = 1, ... ,I) is lower semicontinuous on Rn x 
{u}, then X is u.s.c. at u. 
2) Let 

(7.43) X(u) = {x E Rn : gj(x,u) < 0, j = 1, ... ,I}. 

If each gj(j = 1, ... ,I) is upper semicontinuous on X(u) x {u} and 

(7.44) X(u) C clX(u) 

then X is u.s.c. at u. 

Though we dealt with the preference ordering specified by a cone only, we 
may consider a more general preference structure (domination structure by Yu 
[43]) of the DM. We can also investigate stability according to the change of 
preference structure. See Sawaragi et al. [33], chapter 4 for details. 

7.5 CONTINGENT DERIVATIVES OF THE PERTURBATION MAPS 

7.5.1 General case 

In contrast with stability analysis, sensitivity analysis usually requires quanti
tative investigation on the behavior of the perturbation map. Several papers 
have been published along this approach (e.g. Tanino [38,39], Shi [34,35]' Klose 
[19], Kuk et al. [21,22]). In this section we investigate the contingent deriva
tives of the perturbation maps mainly based on the author's results. We start 
with the following propositions. 

Proposition 7.6: Let F be a set-valued map from Rm to RP and fj E F(u). 
Then 

(7.45) DF(u,fj)(u) + K C D(F + K)(u,fj)(u) 

for all u E Rm, where F + K is a set-valued map from Rm to RP defined by 

(7.46) (F + K)(u) = F(u) + K for all u E Rm. 
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The converse inclusion does not generally hold in the above proposition. A 
sufficient condition for the converse inclusion is given in the following proposi
tion. 

Proposition 7.7: Let F be a set-valued map from R m to RP and y E F(u). If 

(7.47) 

then 

PF(u,y)(O) n (-K) = {O} 

1) DF(u, y)(u) + K = D(F + K)(u, y)(u) 

2) MinKDF(u,y)(u) = MinKD(F + K)(u,y)(u) 

3) PrMinKDF(u,y)(u) = PrMinKD(F + K)(u,y)(u) 

4) WMinKDF(u,y)(u) C WMinKD(F + K)(u, y)(u) 

(7.48) 

(7.49) 

(7.50) 
(7.51) 

for all u E Rm. Moreover, if k is a closed convex cone with k C intK U {O}, 
then 

4') WMinKDF(u,y)(u) C WMinKD(F + k)(u,y)(u) (7.52) 

for all u E Rm. 
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is satisfied, then y E MinK F( u). In fact if otherwise, there exists y E F( u) such 
thaty ~K y. Puttingtk = 1, (uk,yk) = (u,y) implies that y-y E PF(u,y)(O). 
On the contrary the following result holds. 

Lemma 7.1: Let F be a set-valued map from Rm to RP and y E F(u). If F 
is locally upper Lipschitz at u and y E PrMinK F(u), then 

PF(u,y)(O) n (-K) = {O}. 

The following proposition is fundamental in deriving our sensitivity results. 

Proposition 7.8: Let F be a set-valued map from Rm to RP and y E F(u). 
Then 

(7.53) MinKD(F + K)(u,y)(u) C DF(u,y)(u) 

for all u E Rm. 

Now we are ready to analyze the contingent derivatives of the perturbation 
map Wand the weak perturbation map S. Since W (u) C Y (u), if Y is K
dominated by W near u, then 

(7.54) Y(u) + K = W(u) + K for all u E N. 
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Hence, in this case, 

(7.55) D(Y + K)(u,i) = D(W + K)(u,i) for all i) E W(u). 

Similarly, if Y is K -dominated by S near u, 
(7.56) D(Y + K)(u,i) = D(S + K)(u,i) for all i) E W(u). 

On the other hand, if the assumptions in Proposition 7.7 are satisfied for F = Y, 
we have the following relationships: 

(7.57) MinKDY(u,i))(u) = MinKD(Y + K)(u,i)(u), 

(7.58) WMinKDY(u,i))(u) = WMinK D(Y + k)(u,i)(u). 

Therefore we have the following theorem. 

Theorem 7.8: Assume that 

(7.59) PY(u,i))(O) n (-K) = {O}. 

1) If Y is K-dominated by W near U, then 

(7.60) MinKDY(u,i))(u) C DW(u,i)(u) for any u E Rffi. 

2) If Y is k -dominated by S near U, then 

(7.61) WMinKDY(u,i))(u) C DS(u,i)(u) for any u E Rm , 

where k is a closed convex cone with k C intK U {O}. 

Corollary 7.1: Assume that 

PY(u,i))(O) n (-K) = {O}. 

If, for each u E Rm, 

(7.62) MinKDY(u,i)(u) = DY(u,i))(u) 

then, for each u E Rm, 

(7.63) MinKDY(u,i)(u) = DW(u,i))(u). 

In order to obtain the relationship between DY and DC, we introduce the 
concepts of cone closed ness and cone boundedness. 

Definition 7.11: Let C be a nonempty set in RP and D be a cone in RP. Then 
C is said to be 
1) D-closed if C + D is closed, 
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2) D-bounded if C+ n (-D) = {OJ 
where 

(7.64) 
C+ = {y E RP: there exist {hd C intR+ and {yk} C C 

such that hk -+ 0, hkyk -+ y}. 

Lemma 7.2: Suppose that Y(u) be a K-bounded, K-closed set for any u E N, 
where N is a neighborhood of u. Then, for any u E Rm 

(7.65) DG(u,y)(u) = DW(u,y)(u). 

Theorem 7.9: Assume that 

PY(u, y)(O) n (-K) = {OJ. 

If Y(u) be a K-bounded, K-closed set for any u E N, then 

(7.66) PrMinKDY(u,y)(u) = DG(u,y)(u) 

for any u E Rm. 

Finally we obtain a relationship between DW and WMin DY as follows. 

Theorem 7.10: If Y is Dini differentiable at (u, y), then 

(7.67) DW(u,y)(u) C WMinKDY(u,y)(u) 

for any u E Rm. 

Thus we have obtained the following relationships under some conditions: 
(7.68) 

PrMinKDY(u,y)(u) C 
n 

DG(u,y)(u) 

MinKDY(u, y)(u) c 
n 

DW(u,y)(u) c 

WMinKDY(u,y)(u) 
n 

DS(u,y)(u) 

Next we consider how to obtain the contingent derivative of the feasible set 
map Y from that of X and the derivatives of F, because 

(7.69) Y(u) = {y E RP: y = f(x,u) for some x E X(u)}. 

For that purpose we define the following set-valued map X from Rm x RP to 
Rn: 

(7.70) X(u,y) = {x E X(u) : f(x,u) = y}. 

Proposition 7.9: Let y = f(x, u) for x E X(U). Then, for any u E Rm 

(7.71) "V.,j(x,u)DX(u,x)(u) + "Vuf(x,u)u c DY(u,Y)(u). 
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Moreover, if X is lower semi-differentiable at (u, f), x), then the equality holds 
in the above relation, Le., for any u E Rm 

(7.72) 'V x/(x, u)DX(u, x)(u) + 'V u/(x, u)u = DY(u, f))(u). 

The following lemma provides a suffcient condition for lower semi-differentiability 
of X. 

Lemma 7.3: Let f) = /(x,u) for x E X(u). If X is upper locally Lipschitz at 
(u,f)) and X(u,f)) = {x} (Le. singleton), then X is lower semi-differentiable at 
(u, f), x). 

Moreover, if X (u) is defined by inequality constraints as 

(7.73) X(u) = {x E Rn 
: gj(x,u) ~ 0, j = 1, ... ,l} 

Le. 

(7.74) graph X = ((u,x) E Rm x Rn 
: gj(x,u) ~ 0, j = 1, ... ,l} 

then its contingent derivatives is given as follows: 

Proposition 7.10: Suppose that X(u) is given in (7.68), that x E X(u) and 
that there exists (x, ii) such that 

(7.75) 

where 

(7.76) J(x, u) = {j: gj(x, u) = o}. 

Then x E DX(x, u) if and only if 

(7.77) 

7.5.2 Convex case 

If we assume appropriate convexity conditions on the original problem, we can 
refine the above results. First we consider convexity conditions. 

Definition 7.12: A set-valued map F is said to be K-convex if, for any u, u' E 
Rm and any 0: E [0,1] 

(7.78) o:F(u) + (1 - o:)F(u') C F(o:u + (1 - o:)u') + K. 

F is simply said to be convex if it is {O}-convex, i.e. if graph F is a convex set. 
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Hereafter throughout this section we assume the following convexity condi
tions (CA): 
Convexity Assumption (CA) 
1) The set-valued map X is convex. 
2) The function f is K-convex, i.e. 

(7.79) af(x, u) + (1 - a)f(x', u') E f(ax + (1 - a)x', au + (1 - a)u') + K 

for any u,u' E Rm and any a E [0,1]. 

Proposition 7.11: Under the convexity assumption (CA), the set-valued map 
Y defined by 

Y(u) = {y E RP : y = f(x, u), x E X(u)} 

is K -convex. 

We can omit the condition 

PY(u,y)(O) n (-K) = {O} 

under the convexity assumption (CA). 

Theorem 7.11: 1) If Y is K-dominated by W near u, then 

(7.80) MinKDY(u,y)(u) C DW(u,y)(u) 

for any u E Rm. 
2) If Y is K-dominated by S near u, then 

(7.81) WMinKDY(u,y)(u) C DS(u,y)(u) 

for any u E Rm. 

Next we consider sufficient conditions for the converse inclusion of the above 
theorem. For a cone C c RP, we denote its negative polar cone by Co, i.e., 

(7.82) Co = {z E RP: zT y ~ 0 for all y E C} 

Definition 7.13: Let A be a nonempty K-convex set in RP. If a point y E 
MinK A satisfies the condition 

(7.83) 

or equivalently 

(7.84) 

then y is called the normally K -minimal point of A. 
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Remark 7.1: A point fj E A is said to be a properly K-minimal point of a 
K -convex set A if 

(7.85) TA+K(fj) n (-K) = {O}. 

In this case there exists a vector>' E [TA+KCYW n int KO. Thus, the normal 
K -minimality is a stronger concept than the proper K -minimality. From the 
geometric point of view, the latter implies the existence of the supporting hy
perplane to A at fj with the normal vector>' E int KO and, on the other hand, 
the former implies that all the normal vectors of the supporting hyperplanes to 
A at fj belong to int KO. 

Theorem 7.12: If u E int(dom Y) and fj is a normally K-minimal point of 
Y(U), then 

(7.86) DW(u,y)(u) C MinKDY(u,y)(u) 

for any u E Rm. 

Moreover we can obtain the following theorem concerning the contingent 
derivative of the weak perturbation map S. 

Theorem 7.13: 1) If u E int(dom Y), then 

(7.87) DS(u,fj)(u) c WMinKDY(u,y)(u) 

for any u E Rm. 2) Moreover, if Y is k -dominated by S near u and y E G (u), 
then 

(7.88) DS(u,y)(u) = WMinKDY(u,y)(u) 

for any u E Rm, where k is a closed convex cone such that k C int K U {O}. 

Therefore the following relationships hold under some appropriate condi
tions. 

(7.89) 
PrMinKDY(u, fj)(u) 

n 
DG(u,y)(u) 

C MinKDY(u,y)(u) 

II 
DW(u,y)(u) 

WMinK DY(u, y)(u) 

II 
DS(u,y)(u) 

Example 7.1: As an illustrated example we consider the following convex 
multiobjective programming problem with K = R~. Let u E [0, +00) cR. 

mInImIZe f(x) = (Xl + X2,XI - X2)T 

subject to g(x, u) = xi + 2x~ - u ~ 0 
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Then 

x (u) = {x E R2 : xi + 2x~ ~ u} 

Y(u) = {y E R2 : 3yi - 2YIY2 + 3y~ ~ 4u} 

Hence 

If we put 

then, since 

V'xg(x,u) = (-2,0), V'ug(x,u) = -1, V'",f(x) = (~ !1) 
we have 

DX(u,x)(u) = {x : -2Xl - u ~ O} 

DY(u,fj)(u) = V'xJ(x)DX(u,x)(u) 
= {y E R2 : Yl + Y2 + U ~ O} 

and 

MinDY(u,fj)(u) = {y E R2 : Yl + Y2 + u = O} 

which clearly coincides with 

DW(u,fj)(u) = {y E R2 : Yl + Y2 + u = O} 

We should also note that the fact 

DW(u,fj)(O) = {y E R2: Yl +Y2 = O} 

provides the trade-off ratio 1 between the two objectives II and h at fj = 
(-1, -l)T. • 

7.6 SENSITIVITY ANALYSIS USING DUALITY THEORY 

Duality theory in MCDM has been investigated by several authors (see, for 
example, Chapter 3 dealing with duality written by Nakayama in this mono
graph). Some sensitivity results can be obtained as a by-product of the duality 
theory. In this section we introduce two of them, one in the linear case and the 
other in the convex case. 
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7.6.1 Case of linear programming 

As was noted before, in the linear case, we can concentrate on a finite num
ber of extreme points (basic solutions) in a constrained polyhedral set in a 
multiobjective programming problem. Kornbluth [20] analyzed the sensitivity 
of an efficient solution by determining the set of possible weights, so-called 
indifference region, associated with each efficient solution. 

The primal multiobjective linear programming problem which was consid
ered by Kornbluth is as follows: 

(7.90) 
maximize Cx 
subject to Ax ~ Qf.L 

x~O 

where x E Rn,f.L E Rq,A E Rmxn,Q E Rmxq,c E RPxn. Its dual problem is 
given by 

(7.91) 
minimize 
subject to 

where 7r E Rm. Throughout this section we assume that the weighting vector 
satisfies f.L E sq (q-dimensional fundamental simplex) and A E SP, i.e. 

q P 

(7.92) L f.Lj = 1, f.L ~ 0; L Ai = 1, A ~ O. 
j=1 i=1 

The ordering cone K is supposed to be R~ (nonnegative orthant of RP). 
Namely we seek for usual Pareto maximal and minimal points in the above 
problems, respectively. We call them efficient solutions as Kornbluth did here
after in this subsection. 

Proposition 7.12: Given the weighting vector p, x is properly efficient for the 
primal problem with f.L = P if and only if there exist a weighting vector ,\ and 
a dual variable n- such that n- is properly efficient for the dual problem with 
A='\' 

Lemma 7.4: Given the matrices C, A and Q, a vector x is efficient for the 
primal problem if and only if the Kuhn-Tucker conditions are satisfied, namely 
there exist n-,'\, P such that 

(7.93) 

AT n- ~ CT,\ 
(n-T A - ,\TC)x = 0 

Ax ~ QP 
n-T(Ax - QP) = 0 

x,n-,'\,p~O 
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7.6.1 Case of linear programming 
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j=1 i=1 
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Corollary 7.2: Assuming that the efficient solutions to the primal problem are 
nondegenerate, the Kuhn-Tucker conditions imply the following relationships: 

(7.94) 
x = B-1QP 

if = B-T{;TJ.. 

where B is the associated basic matrix, x is the basic vector (including slacks 
where necessary), and (; is the matrix of coefficients of C corresponding to B 
and X. 

Thus, for given P and given x, there exists a space A(P, x) such that any A E 
A(P, x) satisfies the above relationships. This space is called the indifference 
region for the weights associated with an efficient solution X. Of course 

P 

(7.95) UA(P,x) = SP = {A E RP: L:Ai = 1, A ~ OJ. 
i=l 

If we assume that the decision maker can recognize that his preference is 
within a paticular region A(P, x), we can deduce the problem of sensitivity 
analysis to that of estimating the effect of changing data on the indifference 
region A(P, x). 

Example 7.2 (Kornbluth [20] and Hannan [15]): Let 

C ~ (: ~1 D' A ~ 0 ~ n' 
o ) ( 0.5 ) ~4 ,JL = 0.5 . 

There are six decision variables (including the three slack variables) and four 
efficient bases: 

Looking at the efficient solution x = (Xl,X5,X6) = (!, 12i ,5), 

Hence 

( 

3 0 
(; = 1 0 

1 0 

o 0) 10. 
o 1 
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Thus from the constraints AT it ~ C A and it ~ 0, we can obtain the indifference 
region A(/1, x) as 

tAl + tA2 - iA3 ~ 0 
~AI - tA2 + tA3 ~ 0 
:tAl + :tA2 + :tA3 ~ 0 
Al + A2 + A3 = 1, AI,A2,A3 ~ 0 

These inequalities specify the values of A for which (Xl, X5, X6) is an efficient 
basic solution. • 

7.6.2 Case of convex programming 

Next we consider sensitivity with respect to the right-hand side perturbation 
in convex multiobjective programming problem. The following results are es
sentially due to Balbas and Jimenez Guerra [5]. Though they considered a 
convex programming problem with right hand side perturbation in more gen
eral spaces, we focus on the case of finite dimensional Euclidean spaces. Thus 
we consider the following primal problem: 

mmlmlze I (x) 
subject to X E X, g(x) ~ b (7.96) 

where I : Rn -4 RP, 9 : Rn -4 Rm, X C Rn. We assume the convexity i.e. 
every li(i = 1, ... ,p) and every gj(j = 1, ... , m) are convex functions and X 
is a convex set. 

Let 

(7.97) X(b) = {x EX: g(x) ~ b} 

and 
P 

(7.98) A ESP = {A E RP : L Ai = 1, Ai ~ 0 (i = 1, ... ,pn· 
i=l 

Definition 7.14: x E X(b) is said to be a A-optimal solution of (P b ) if 

(7.99) AT I(x) ~ AT I(x) for any x E X(b). 

Definition 7.15: A positive vector /1 E R+ satisfying 

(7.100) inf AT I(x) = inf {AT I(x) + /1T(g(x) - bn 
",EX (b) "'EX 

is said to be a Lagrangian A-multiplier for (P b ). 

Proposition 7.13: Let Xo E X(O) and Xb E X(b) be A-optimal solutions 
for (Po) and (P b ) respectively, and /10 and /1b be corresponding Lagrangian 
multiplier vectors respectively. Then 

(7.101) 
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Now let 

(7.102) M>. = {It E R+ : {AT f(x) + J-lT g(x) : x E X} is bounded below}, 

(7.103) ¢(A,f-l) := inf{AT f(x) + f-lT g(x) : x E X}, A ESP, f-l EM>., 

and 

(7.104) 

For every A E SP, the A-dual program of (P b ) will be 

(7.105) 
maXImIze ¢(A, f-l) - f-lTb 
subject to f-l EM>.. 

Moreover, the dual program of (P b ) will be 

maXImIze 'ljJ(A, GT A) - Gb 
subject to A ESP, G E RPxm, GTA EM>.. (7.106) 

Proposition 7.14 (weak duality theorem): If x E X(b),G E RPxm,A E 
SP,GTA EM>., then 

(7.107) 

never holds. 

Corollary 7.3: If x E X(b),A E SP,GTA E M>. and 

(7.108) 'ljJ(A, GTA) - Gb = f(x), 

then x is an optimal solution of (Pb) and (A,G) is an optimal solution of (D). 

Definition 7.16: Under the notations of the above corollary, x and (A, G) are 
called associated solutions. 

Theorem 7.14: Let A E SP and x E X(b) be an A-optimal solution of (Pb). If 
b :/; 0, the following assertions are equivalent. 
1) There exists f-l E R+ which is a Lagrange A-multiplier for (Pb ). 

2) There exists a p x m matrix G such that (A, G) is an optimal solution of 
(Db) and x and (A, G) are associated solutions. 

Based on these facts, the following sensitivity theorem can be obtained. 

Theorem 7.15: Let V be an open set in Rm, A E SP, Xb be a A-optimal solution 
of (Pb), and Gb be a p x m matrix such that (A, Gb) is an optimal solution of 
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(Db) associated with Xb for every b E V. IT the function h : Y --t RPxm defined 
by 

(7.109) h(b) = Gb for every b E V 

is differentiable, then the function F : V --t RP such that 

(7.110) F(b) = f(Xb) for every bE V 

is also differentiable and moreover, the equality 

(7.111) F'(b) = -Gb - K(b) 

holds for every b E V, where K(b) denotes the projection of h'(b)b onto {A}l. 
(orthogonal compliment of the linear subspace spanned by the vector A) for 
every b E V. 

An illustrative example is given in BalMs and Jimenez Guerra [5]. 

Example 7.3: Let bE (-00,0) and consider a convex multiobjective problem 

mlllimize f(x) = (x~, 2x~)T 
subject to g(x) = Xl + X2 ~ b. 

Let A = (~, ~). Then A-optimal solution of (Pb) is clearly Xb = (ib, ib) and the 
Lagrangian A-multiplier is J.lb = - ib. Therefore the function F in the above 
theorem is 

and 

On the other hand 

Hence 

-~~ ) ( =l~ ) = ( H ) = F'(b) 

and the result of Theorem 7.15 is illustrated. • 
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7.7 SENSITIVITY ANALYSIS IN THE DISCRETE MCDM 

In this section we assume that the set of feasible alternatives (decisions) is fixed 
as 

(7.112) A = {aI, a2,· .. ,at} (finite set) 

and consider a discrete multiple criteria decision making problem with an eval
uation function W(·,u) which depends on a parameter u which reflects uncer
tainty. We also assume that u satisfies the condition u E S which is a convex 
set in Rm. 

In this case our attention is restricted mainly to the following analysis: 
1. To obtain the region of u for which each alternative is considered to be 

best. 
2. How does the best alternative change when the parameter value changes. 
Rios-Insua published a monograph dealing with this kind of analysis in detail 

([30J, see also Rios-Insua and French [31]). His analysis was also extended by 
Proll et al. [28J. We will briefly introduce their results in the following. 

First the non-dominated alternatives constitute the solution set to the prob
lem at hand. Alternative aj dominates ak if 

(7.113) 
w(aj, u) ~ Weak, u) for all u E Sand 
w(aj, u) > Weak, u) for some u E S. 

The set of all non-dominated alternatives is denoted by AI. 

Definition 7.17: aj is potentially optimal if 

(7.114) 

for some u E S. 

To find out whether aj E Al is potentially optimal, the following problem 
may be solved: 

(7.115) 
minimize max{W(ak' u) - w(aj, u): ak E AI, k -:j; j} 
subject to u E S. 

aj is potentially optimal if and only if the optimal value of the above problem 
is ::::; O. 

Definition 7.18: The optimality subset Sj associated with aj is 

(7.116) 

An alternative aj is potentially optimal if and only if Sj -:j; 0. We assume 
that we now have an estimate u of u and the current best alternative is a*, i.e. 

(7.117) 
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Definition 7.19: aj is adjacent potentially optimal to a. if 

(7.118) 

To find whether aj is adjacent potentially optimal to a., we may solve the 
following problem: 

minimize (lJI(aj,u) - w(a*,u))2 
subject to u E S, lJI(ak'u) -1JI(a.,u) ~ 0, for all k:j: j. 

(7.119) 

Then aj is adjacent potentially optimal to a. if and only if the optimal value 
of the above problem is O. The solution of this problem gives us u for which 
both aj and a. are optimal. 

Let A. be the set of adjacent potentially optimal alternatives to a •. Proll 
et al. stated that filtering of the initial set down to A. is justified by the 
observation that the initial judgemental inputs u are not arbitrary but rather 
represent the values with which the DM is most comfortable. However, the 
DM may reflect upon these values and modify them as his understanding of 
the problem is enhanced by the decision analysis. To focus the DM's attention, 
it is not enough to list the immediate contenders of a. for optimality. It is 
desirable to have a quantitative measure of how close each contender is to a*. 
Equivalently, one would like to know how sensitive a. is to changes in the 
judgemental data. The obvious approach is to find the distance between u and 
each of the common boundaries of S. and its adjacent optimality subsets. This 
can be done by solving, for each aj E A l , a problem 

(7.120) 
minimize d( u, u) 
subject to uES, w(aj,u)-IJI(a.,u) =0 

where d(·,·) is some continuous metric. The optimal value dj of the above 
problem is the least change in u such that the DM is indifferent between aj 
and a •. 

Rios Insua also proposed an index r E [0,1] in order to give an indication 
of the sensitivity of the DM's decisions to the judgemental data. This index is 
derived as follows. Let p = min{dj : aj E A.}. Then p is the largest radius of 
the ball centerd at u contained in S.. A relative measure of insensitivity can 
be defined as the ratio r = j, where r5 is the radius of the smallest ball centered 
at u containing S, i.e. r5 = maxuES d(u, u). 

7.8 CONCLUSIONS 

We have explained several interesting results in stability and sensitivity anal
ysis in MCDM or vector optimization. Selection of the topics is based on the 
author's personal preference. Mainly because of page limitation there remain 
several other topics which are not included in this chapter. For example, Ju
rkiewicz [18] and Steuer [36] dealt with sensitivity analysis in goal programming 
(see also Dauer and Liu [6]). Rarig and Haimes [29] regarded the parameter 

7-26 SENSITIVITY ANALYSIS IN MCDM 

Definition 7.19: aj is adjacent potentially optimal to a. if 

(7.118) 

To find whether aj is adjacent potentially optimal to a., we may solve the 
following problem: 

minimize (lJI(aj,u) - w(a*,u))2 
subject to u E S, lJI(ak'u) -1JI(a.,u) ~ 0, for all k:j: j. 

(7.119) 

Then aj is adjacent potentially optimal to a. if and only if the optimal value 
of the above problem is O. The solution of this problem gives us u for which 
both aj and a. are optimal. 

Let A. be the set of adjacent potentially optimal alternatives to a •. Proll 
et al. stated that filtering of the initial set down to A. is justified by the 
observation that the initial judgemental inputs u are not arbitrary but rather 
represent the values with which the DM is most comfortable. However, the 
DM may reflect upon these values and modify them as his understanding of 
the problem is enhanced by the decision analysis. To focus the DM's attention, 
it is not enough to list the immediate contenders of a. for optimality. It is 
desirable to have a quantitative measure of how close each contender is to a*. 
Equivalently, one would like to know how sensitive a. is to changes in the 
judgemental data. The obvious approach is to find the distance between u and 
each of the common boundaries of S. and its adjacent optimality subsets. This 
can be done by solving, for each aj E A l , a problem 

(7.120) 
minimize d( u, u) 
subject to uES, w(aj,u)-IJI(a.,u) =0 

where d(·,·) is some continuous metric. The optimal value dj of the above 
problem is the least change in u such that the DM is indifferent between aj 
and a •. 

Rios Insua also proposed an index r E [0,1] in order to give an indication 
of the sensitivity of the DM's decisions to the judgemental data. This index is 
derived as follows. Let p = min{dj : aj E A.}. Then p is the largest radius of 
the ball centerd at u contained in S.. A relative measure of insensitivity can 
be defined as the ratio r = j, where r5 is the radius of the smallest ball centered 
at u containing S, i.e. r5 = maxuES d(u, u). 

7.8 CONCLUSIONS 

We have explained several interesting results in stability and sensitivity anal
ysis in MCDM or vector optimization. Selection of the topics is based on the 
author's personal preference. Mainly because of page limitation there remain 
several other topics which are not included in this chapter. For example, Ju
rkiewicz [18] and Steuer [36] dealt with sensitivity analysis in goal programming 
(see also Dauer and Liu [6]). Rarig and Haimes [29] regarded the parameter 



SENSITIVITY ANALYSIS IN MCDM 7-27 

as a random variable and sensitivity analysis as a kind of a stochastic prob
lem. Fuller and Fedrizzi [9] dealt with stability in multiobjective possibilistic 
(i.e. fuzzy) linear programming. Guddat et al. [14] provided unified approach 
to both multiobjective and stochastic optimization based on parametric opti
mization. Results based on sensitivity analysis are often useful in hierarchical 
optimization (see, e.g. Shimizu et al. [37]). Research in this direction will be 
expected in the future. 

Finally a special issue of sensitivity analysis in the Journal of Multi-Criteria 
Decision Analysis is to be published (guest editor Rios Insua). It will provide 
several interesting new results in this field. 
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optimization (see, e.g. Shimizu et al. [37]). Research in this direction will be 
expected in the future. 

Finally a special issue of sensitivity analysis in the Journal of Multi-Criteria 
Decision Analysis is to be published (guest editor Rios Insua). It will provide 
several interesting new results in this field. 
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8-2 GOAL PROGRAMMING 

8.1 GOAL PROGRAMMING DEFINITIONS 

Goal programming is one of the first management science approaches to consider 
decision problems with multiple objectives. Chames, Cooper and Ferguson [28] 
introduced the concept in 1955 when analyzing a salary schedule intended to 
increase pay sufficiently to attract those with special skills, subject to disrupting the 
current pay schedule as little as possible. The infeasibility associated with meeting 
the targets led to the consideration of deviational variables, which could be 
minimized while still taking on some value reflecting the amount of 
underachievement with respect to each target. 

Goal programming has thus been around for a considerable length of time. 
The ability to consider a variety of objectives is attractive in treating managerial 
decision problems. Managers have long been involved in the process of setting 
targets, especially those requiring strategic considerations. Managers also are adept 
at making plans that are infeasible in the sense that all objectives cannot be attained 
simultaneously. The process of goal programming involves decision makers 
identifying goals, setting target levels for these goals, and identifying the 
importance of these targeted goals. 

In this paper, we first review goal programming formulations that have 
widely been used. Some of the many recent applications of goal programming are 
considered, categorizing them in broad functional areas. This is followed by a 
discussion of some of the issues involved in the use of goal programming. This 
leads to review of current research in the interactive use of goal programming and 
preference functions. We will then briefly identify a few other areas of active 
research, and conclude with some comments about the use of goal programming to 
aid multiple objective decision making. 

There are two major approaches taken to goal programming: (1) 
minimizing a weighted function of goals, and (2) preemptive goal programming. 
Other mathematical forms have also been used, including minimizing the maximum 
deviation and fractional goal programming. Other nonlinear goal programming has 
also been used, but the formulations are not distinctly different than single objective 
forms other than the addition of deviational variables. 

8.2 MIN SUM Goal Programming 

The minimum sum method of goal programming is essentially an application of a 
linear preference function to linear programming models. This is the approach 
presented by Charnes and Cooper [26] in the first textbook presentation of goal 
programming. The process involves identifying objectives, setting a target for each 
objective, and weighting each of the targets. When objectives are identified, the 
function Fi measuring attainment for each objective i is set equal to the target T;. 
Because overachievement or underachievement of the target are possible, 
deviational variables di- (for underachievement) and d/ (for overachievement) are 
introduced: 
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(8.1) 

For all objectives where less is better, d/ is minimized, while d;' is allowed to take 
on any positive value. For objectives where more is better, the reverse is true (d;' is 
minimized while d; + is allowed to take on any value). The objective function is 
then: 

(8.2) 
K 

Minimize L (Windi- + wipdt) , 
i=l 

where K is the total number of objectives, and W; is the weight given to minimizing 
the selected deviational variable from target i. Both deviational variables from a 
particular constraint can be minimized, possibly with different weights. 

This form of goal programming is commonly referred to as MINSUM goal 
programming. Those researchers who prefer the preference function approach to 
multiple criteria analysis typically prefer this form. It guarantees nondominated 
solutions as long as each weight W; > O. MINSUM goal programming is a direct 
application of the idea of preference functions to the field of mathematical 
programming. 

8.3 Least Absolute Value Regression 

Another application of the MINSUM form of goal programming is least absolute 
value regression. For data consisting of n observations CiY, Cix1 and Cix2 of the 
dependent variable Yand independent variables Xl and X1 the formulation is: 

(8.3) 

Subject to 
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The solution vector ~ gives the coefficients in the regression model: 

(8.4) 

Note that this formulation is exactly the same as MIN SUM goal programming, 
except that in MIN SUM goal programming weights are usually applied to the 
deviational variables in the objective function, reflecting the decision maker's 
preference function. Early works in least absolute value analysis include Freed and 
Glover [56, 57] and Dielman and Pfaffenberger [46]. Chames, Cooper and 
Sueyoshi [30] investigated some technical aspects related to least absolute value 
regression. Least absolute value regressions are more robust than ordinary least 
squares regressions, in that they are less affected by outlier observations. Using 
goal programming for least absolute regression models also allows including 
additional constraints (as done by Chames, Cooper and Ferguson, [28]). 

Recent publications using goal programming as a regression-related tool 
include Lam, et al. [105], Lam and Choo [103] (classification); and Love and Lam 
[123] (combining forecasts). Lam and Moy [106] developed a goal programming 
model to simultaneously determine cut-off values for different classification 
functions. Sueyoshi [195] used the median as the basis of a regression measuring 
salary discrimination. Caples, Hanna and Premeaux [18] analyzed the use of goal 
programming as a regression tool in real estate appraisal. Golany and Yu [70] used 
a discriminant function obtained from goal programming to estimate the efficient 
frontier in data envelopment analysis. 

8.4 MIN MAX Goal Programming 

MINMAX goal programming is very similar to MINSUM goal programming, 
except that the objective function is to minimize the maximum deviational variable 
value. This can be easily modeled by creating a new variable Max, which is 
constrained to be greater than or equal to each deviational variables to be 
minimized. The objective function is simply to minimize the new variable Max. 
The formulation: 

(8.5) Minimize Max 
n 

subject to: 2:aijx j + d;- - dt = b; for i = 1 to m 
j=l 

Max ;:: d;- for i = negative deviations to be minimized 

Max ;:: dt for i = positive deviations to be minimized 

xj,d;-,dt ;::Oforalli,j. 
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Relative to human decision making, the MINMAX idea is seen primarily in a game 
theoretic context. Yang [218] demonstrated that a bilateral monopoly model was a 
special case of a generalized goal programming model with conflicting objectives 
between two monopolists. Ogryczak [150] presented algorithms for lexicographic 
minmax solution in the context of locating public facilities to minimize the travel 
distances among service recipients. While not presented as goal programming per 
se, the lexicographic solution method would adapt to preemptive goal 
programming. Ogryczak found that the standard minmax approach could violate 
desired Pareto optimality and equity characteristics, while the lexicographic method 
yielded solutions satisfying these requirements. Malczewski and Ogryczak [125] 
compared utility function based methods with goal programming approaches in 
multiple criteria location problems, noting advantages and disadvantages for each. 
A framework for an interactive decision support system was suggested. 

8.5 Preemptive Goal Programming 

The preemptive version of goal programming was presented by Lee [110] and 
Ignizio [80, 82]. Preemptive goal programming involves a slightly different 
modeling process. 

1. Identify objectives 
2. Set targets for objectives (multiple targets per objective allowed) 
3. Prioritize these objective-target pairs 

At a particular priority level, more than one target can be 
considered. If they are not measurable in common terms 
(commensurate), tradeoff weights need to be identified for use 
within a priority level. 

4. Solve a sequence of linear programming models by priority level 

The formulation is: 
m m 

(8.6) Minimize PI I( wlindi- + WIipdt ); ... Pk I( W2indi- + W2ipdt ) 
i . 

n 

subject to: Iaijxj +di- -dt =bi fori=1 tom 

xj,d;-,dt;;::O foraili,j 

PI »>P2 »> ... »>Pk , 

where k is the number of preemptive levels, m is the number of constraints 
(including goal constraints), and n is the number of decision variables xj" This 
model is solved in effect through a series of linear programs. The first LP is to 
minimize the weighted set of deviational variables at PI. If all deviational variables 
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to be minimized at this priority level are satisfied, those deviational variables are 
eliminated from the model and the LP minimizing the weighted set of deviational 
variables at P 2 is considered. Attainment of first priority goals is maintained 
because deviational variables allowing violation of priority one targets are not 
allowed to take on values. This process continues until target deviational variables 
at the specific priority level are not minimized at zero value. If there are not 
multiple solutions minimizing nonattainment, the solution to the model is identified. 
If there are multiple solutions minimizing the weighted function of target 
deviational variables, these deviational variables are constrained to be no greater 
than the current level, and the next priority is considered until there is a unique 
solution. If all goals in a model are satisfied, the solution is likely to be dominated. 
It is trivial to avoid this by ensuring that goals that are not capable of complete 
satisfaction are included in the model. 

While this formulation allows weights, weights are usually not used in 
preemptive goal programming. As Martel and Aouni [128] pointed out, weight 
aggregation can be difficult for human decision makers. Barnett, et al. [6] used 
multidimensional scaling to identify a cardinal utility function of weights, arguing 
that other methods were difficult to implement in an accurate manner. 

8.6 Fractional Goal Programming 

Fractional goal programming involves targets for ratios. Chames and Cooper [27] 
introduced this form of goal programming, and Kornbluth and Steuer [100] 
extended the topic. A common application is where a manager would like to adopt 
those policies that best meet target performance ratios such as return on investment, 
or some other of the many financial ratios used to evaluate company performance 
by stockholders. Goedhart and Spronk [66] gave one fmancial application of 
fractional goal programming. A formulation for a fractional goal programming 
model is: 

m 

(8.7) Minimize I (wlind;- + w\;pdt) 
;=\ 

Sometimes it is possible to multiply through by the function of Xj in the 
denominator prior to adding the deviational variables, in which case this model 
becomes linear. However, interpretation of the deviations is complicated, and 
assigning weights, always a difficult step, is made much more indirect. Therefore, 
there are good reasons for treating this formulation as a nonlinear programming 
problem. 
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Goedhart and Spronk [67) presented an interactive solution approach for 
fractional goal programming models as part of an interactive, heuristic planning 
procedure for decentralized organizational planning and control. Despotis [43) used 
fractional goal programming as a tool to identify a rninmax solution with the 
purpose of assessing utility. Ohta and Yamaguchi [151] addressed fuzzy fractional 
goal programming as a way of more accurately reflecting decision making 
considering natural goals of performance ratios, and dealing with vague data. 

Ellis [49) and Ellis and Bowman [50] applied fractional functions to reflect 
target ratios of pollution emission reduction in an air pollution control model. 
These fractional functions were included to consider equity considerations across 
regions. 

8.7 Nonlinear Goal Programming 

Saber and Ravindran (176) gave a thorough review of nonlinear goal programming, 
including solution methodologies as well as applications. There have been a number 
of goal programming models presented that involve nonlinearities. These 
nonlinearities can arise due to nonlinear relationships between variables such as are 
found in engineering design [51, 101, 154], or sometimes due to economic 
formulations [143) or probability calculation [207). Another source of nonlinearity 
comes from stochastic models, where technological coefficients can be probabilistic 
[47, 119, 152,216), resulting in chance constrained goal programming models. 

Solution methodologies for the most part draw upon the general set of 
tools available for nonlinear programming, just as in the case of linear 
programming. The exceptions are preemptive goal programming simplex [85, 109] 
and the Arthur and Ravindran algorithm [3], which utilize the specific features of 
preemptive goal programming. In nonlinear goal programming, four basic 
strategies were identified: simplex based, direct search, gradient based, and 
interactive. 

Of the simplex based approaches, Ignizio [80] modified a method of 
approximation programming for goal programming. Taylor series expansion is 
used to linearize nonlinear functions in the vicinity of a given feasible point, and the 
resulting LP model solved. Separable programming can be used to solve models 
with nonlinearity due to chance constraints. Quadratic programming can also be 
modified for goal programming models. 

Direct search has been applied by Nanda, et al. [143J to a nonlinear energy 
goal programming problem. Ignizio [80] used the Hooke and Jeeves approach for 
nonlinear goal programming, followed by Hwang and Masud [79]. This method 
was used for solution of a nonlinear quality control problem [164]. 

Gradient based methods using feasible directions with optimal step length 
determination have been adopted for nonlinear goal programming [120]. That 
algorithm was applied to chance constrained goal programming models. The 
gradient approach requires differentiable nonlinear functions, but can be 
significantly faster than other nonlinear methods (although for some problems it can 
be significantly slower). Clayton, et al. [36] developed a systematic search 
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procedure to optimize a multiresponse simulation model structured as a preemptive 
goal programming model. Modified pattern search and gradient search techniques 
were combined in this approach, which was used by Taylor, et al. [207, 208] to 
solve nonlinear integer goal programming models. Roljic and Dujsic [169] have 
developed a gradient nonlinear goal programming algorithm using the feasible 
directions method with optimal step length for nonlinear goal programming models 
arising from Cobb-Douglas production functions. 

Interactive approaches operate through decision maker revision of 
preference information. Weistroffer [217] developed a method converting a 
nonlinear multiple objective problem into a sequence of unconstrained single 
objective subproblems to minimize squared deviation from targets and hard 
constraints. Masud and Hwang [129] proposed a nonlinear interactive goal 
programming method where no priority levels or weights were used initially. 
Upper and lower bound values for each objective were generated through a learning 
process on the part of the decision maker. 

Other applications of nonlinear goal programming have been presented by 
Lewis and Taha [122] who addressed response functions. Chunhachinda, et al. [34] 
dealt with Markowitz portfolio theory. They studied fourteen international stock 
markets over the period January 1988 through December 1993. Returns were found 
to be stable, but not normally distributed. Polynomial goal programming 
incorporating investor preferences for skewness was used to determine an optimal 
portfolio. These researchers noted that investors trade expected return for 
skewness. 

8.8 Application of Goal Programming 

Goal programming is probably the most widely used multiple objective 
mathematical programming technique. There have been many applications, some 
reviewed and classified by Zanakis and Gupta [224], Romero [170], Schniederjans 
[179, 180], and Tamiz, et al. [205]. A number of agricultural goal programming 
applications were included in Romero and Rehman [174]. 

While we do not intend a complete and thorough review of goal 
programming applications (refer to the references in the prior paragraphs for such 
reviews), we would like to point out the variety of problem environments 
in which goal programming has been applied across the spectrum of mathematical 
programming problems where multiple objectives are present. The applications we 
consider are primarily very recently published articles. Schniederjans [181] noted 
almost one thousand goal programming articles through 1994, arguing that the 
product life cycle applied and that he noted a decline in such articles in recent 
times. However, a quick review of journals since that time does not indicate the 
slowdown in interest in goal programming expected by Schniederjans. 

8.8.1 Engineering 
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In the engineering field, goal programming models have appeared in many 
applications. Civil engineering offers many opportunities, because of many public 
policy decisions involving complex sets of objectives in issues such as water 
resources management and other public works administration problems. Gu and 
Tang [190] presented a MINSUM goal programming network model to schedule 
bus trips in heavily congested cities. Goal programming models have also been 
applied to problems in other engineering disciplines. Shiau, et al. [187] applied 
goal programming in a mechanical engineering application. Chang, Chen and Chen 
[21] used fuzzy MINSUM goal programming in a cost estimation model. Ehie and 
Benjamin developed a model to plan Zambian copper mining [48]. 

A common decision problem involves selection. Ravirala and Grivas 
[165] applied MINSUM goal programming to select pavement and bridge projects 
in an annual operation involving goals including balance of maintenance and 
rehabilitation projects, geographic dispersion of funding, safety improvement, and 
minimization of cost and delay. Qiu [159] used a genetic algorithm to solve a zero
one project ranking problem. Taplin, et al. [206] also applied goal programming to 
road project selection, and AI-Faraj et al. to selection of traffic centers in Saudi 
Arabia [1]. Mukherjee and Bera [140] used MINSUM goal programming for 
selection of alternative approaches in the coal industry, while Chen presented a 0-1 
model for scheduling maintenance projects [32]. The line between engineering and 
business disappears in selection problems. The same basic problem in a non
engineering context was tackled with preemptive forms of goal programming in 
models for selection of a brewery site [75], management information system 
projects [177, 178, 186], and selection of a house [184]. 

Computer science is a field with contacts in both the engineering and 
management environments. Goal programming has been applied to the computer 
field in a number of application areas (hard disk production [219, 220], robotic 
control [202], and technology selection [189]). 

8.8.2 Operations Management 

Goal programming is widely used in operations management. It has been applied to 
such diverse decisions as selection of flexible manufacturing products [117, 142], 
line balancing [68], reliability [60], warranty analysis [136], and quality control 
[185]. In a production planning application, goal programming was used to resolve 
infeasibility to repetitively develop a production plan by minimizing deviations 
below target product levels [89]. Project scheduling applications are widespread 
[44, 62, 157] as are worker scheduling applications [16, 61]. Yura [222] gave a 
model to seek satisfaction of worker preferences under due-date constraints. Lee 
and Luebbe presented a zero-one approach for warehouse location [118]. 
Nudtasomboon and Randhawa [149] modeled a resource-constrained project 
scheduling problem with a zero-one preemptive goal programming model. Lashine, 
et al. [107] modeled a machine shop scheduling model with mixed integer, 
nonlinear goal programming. Min [133] 
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presented a chance-constrained goal programming model for selection of 
transportation mode in international logistics. Goal programming models have been 
constructed to aid management of perishable inventory [93, 94], the master 
production scheduling problem [212, 213] and for just-in-time analysis [58, 98, 
116, 112,215]. 

8.8.3 Business 

The applications of goal programming to business related decisions overlaps that of 
engineering to a large degree. There are shared interests in computer science 
related disciplines, as well as operations management. But there have been 
applications specific to business decision making as well. Lee and Shim [121] 
addressed zero-based budgeting with preemptive goal programming. Schniederjans 
and Garvin [182] applied a preemptive goal programming model to activity-based 
accounting. In the marketing field, Golany, et al. [69] dealt with a problem of 
selecting marketing panels considering the conflicting goals of cost and accuracy, 
while Kwak, et al. [102] presented a goal programming model to aid assignment of 
marketing distribution patterns. In the organizational management setting, there 
have been articles on force planning [59, 97], employee scheduling [47, 96, 162], 
and many other managerial decision problems. MINSUM goal programming was 
found to yield telecommunications pricing more reflective of faimess and 
efficiency, resulting in lower prices to consumers [14]. A preemptive model was 
presented to structure municipal bonds with the intent of providing an interactive 
system to minimize risk while assuring adequate return [158]. 

The field of finance has seen an especially rich number of goal 
programming applications. Portfolio analysis has been the subject of articles, 
including a MINSUM polynomial goal programming model [34]. Cooper, et al. 
[39] used dual variables from a MINSUM goal programming model measuring 
deviations from risk and return targets. Michnik and Trzaskalik [132] presented a 
model for bank portfolio management. Fund management involves a variety of 
goals, and goal programming models have been developed to support fund 
allocation [10, 64, 86, 95]. Global financial planning has been addressed [114, [115, 
113]. AI-Saffar and Osman [2] analyzed portfolio investments in the Egyptian 
insurance industry. Schniederjans and Hoffman [183] presented a zero-one goal 
programming model for acquisition of multinational firms. A goal programming 
model to budget water resource investment was published in a joint 
engineeringibusiness application [200]. Least absolute value regression was applied 
to a divestiture problem in Japan [196] and to the problem of appraising real estate 
[18]. 

The application of goal programming to portfolio management has been 
especially active [11, 111]. Feinstein and Thapa [53] developed a MINSUM goal 
programming model allowing interpretation of dual prices to aid in analysis of this 
class of problem. 

8.8.4 Agriculture 
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There has been a long tradition of goal programming in agricultural studies [174]. 
Applications range from animal husbandry [84], forestry [210, 211], and fisheries 
[141]. Fiske, et al. [54] developed a zero-one goal programming model to 
simultaneously consider profitability, risk, and environmental factors in forage
resource production systems for cattle in West Virginia. Van Berlo and Van Berlo 
[209] developed a goal programming model to ensure consistency in a model for 
the vegetable processing industry considering the sectors of market, industry, and 
agriculture. Broad [13] applied goal programming to explore efficient means of 
production of milk concentrate. Damij [41] developed an interactive goal 
programming decision support system (DSS) to generate an animal diet with 
specified nutritional balance. Johnson, et al. [87] developed an internal parasite 
control model to fight animal disease. Brown, et al. [15] used a goal programming 
model to estimate the number of insect pests from crops. Their model combined 
goal programming with simulation to interactively evaluate alternative policies. 
Berbel, et al. [7] developed an interactive decision support system for a large 
horticultural company in Spain for annual crop planning, focusing on the tradeoffs 
between gross margin and marketing goals. The system combined goal 
programming with another form of multiobjective programming. Zamora and 
Berbel [223] used preemptive goal programming for wildlife management in Spain. 
Rossing, et al. [175] applied interactive goal programming to flower bulb 
production planning. Sumpsi, et al. [197] presented a formulation to convert 
preemptive goal structure into a MINSUM formulation in an agricultural setting. 

In the field of forestry, Bernetti [9] reviewed goal programming and linear 
programming models for forest planning, noting the flexibility of goal 
programming models. Kangas and Pukkala [92] formulated a goal programming 
model for forest management planning in Finland. Suter and Calloway [201] 
developed a DSS incorporating goal programming for rough mill planning in the 
lumber industry. Kolenka [99] formulated a goal programming model for forest 
management in Slovakia. Buongiorno, et al. [17] developed goal programming 
models for improvement of forests in the Jura Mountains. 

Goal programming models for water use planning in agriculture have been 
applied. McGregor and Dent [131] used preemptive goal programming (as well as 
another multiple objective programming model) to resolve water conflicts on the 
Rakaia River in New Zealand. Peralta, et al. [153] used a goal programming-based 
DSS for identifying water supply strategies while achieving desired groundwater 
quality goals in Arkansas. 

There has been heavy use of goal programming for both macroeconomic 
and microeconomic analysis. At the macro level, goal programming has been 
applied to land-use planning in Egypt [52] and Canada [221]. He, et al. presented 
three goal programming models for 11 varieties of vegetables in China [74] that 
was estimated to have the potential of saving millions of Chinese dollars. Holden 
[76] analyzed fertilizer subsidy policies using a goal programming model in 
Zambia. Njiti and Sharpe [146] developed a goal programming model to resolve 
competition and conflicts among land uses in the Cameroon. Zekri and Romero 
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[225] developed two goal programming models to evaluate crop policies in Spain 
considering water and energy use. Sutardi, Bector and Goulter [198] developed an 
integer goal programming model to consider economic efficiency along with 
agricultural development policies in Indonesia. 

Microeconomic analysis support from goal programming models of 
agricultural operations have also been common. Cornett and Williams [40] used 
goal programming for multiple land use planning considering outdoor recreation, 
timber, livestock production, and deer management in southern California. 
DeKoeijer, et al. [42] applied goal programming to gain insight into the tradeoff 
between income and pollution in Dutch agriculture. Ciuchi and Pennacchi [35] 
used a weighted goal programming model for evaluating alternative farm 
management policies in Italy. Coetzee, et al. [37] considered net farmer income, 
minimum lending, and minimum area planted in South Africa, rmding that both the 
goal programming and the other multiple objective programming models yielded 
plans less risky than the linear programming generated plan. Nino de Zepeda, et al. 
[145] used goal programming to compare soil erosion policies in Chile. 

8.8.5 Public Policy 

Perhaps one should expect the greatest number of goal programming applications to 
be in the field of policy decision making. It is in this field that the most attention is 
usually given to multiple objectives, with the need to match diverse targets as much 
as possible. 

Waste management is a critical societal issue involving difficult tradeoffs. 
Many models have been presented to aid waste management throughout the world 
[19,24, 77, 138, 160, 194]. A number of fuzzy goal programming models have 
been proposed to deal with the sometimes uncertain relationships between actions 
and response [20, 108]. More advanced nonlinear [22] and stochastic [25] goal 
programming models have recently been proposed for such issues as water planning 
and other waste management related topics. Chang and Wang [23] applied fuzzy 
goal programming to reflect uncertainties in both priority and scale in economic and 
environmental goals. 

Energy management continues to be an important public policy question 
[12,90, 124, 161]. Kalu [91] developed a model of individual oil firms considering 
the supply side of energy, using the model to examine the effects of crude oil price 
changes. Goal programming models have also been applied to the problem of air 
pollution (see [38] for a comprehensive review, including goal programming) and 
radiation (see [33], where a genetic algorithm was implemented). 

Goal programming models have been applied to a variety of other 
interesting public policy questions. These include mental health services planning 
[191], a DEA study of the European Union [5], wildlife management [8], 
ambulance allocation [227], and school districting [148]. Yin, et al. [221] applied a 
multisector goal programming model for land conversion impact assessment in 
British Columbia. 
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8.9 Issues in the Use of Goal Programming 

Romero [171] addressed some of the issues involved across various forms of goal 
programming models. There have been three primary criticisms of preemptive goal 
programming. The first is that it might generate dominated solutions. The second 
is that when you move between priority levels, there is an infmite tradeoff in value 
implied. Third, some question the ability of decision makers to set target levels. 

8.9.1 Avoiding Dominated Solutions in Goal Programming 

Zeleny [226] recommended using MIN SUM goal programming rather than 
preemptive goal programming to avoid the possibility of recommending dominated 
solutions. There is a feeling on the part of those who feel strongly that preemptive 
goal programming is not an appropriate modeling method that avoiding 
nondorninated solutions is an extremely urgent characteristic. In response to these 
arguments, Hannan [71] provided formulations to ensure nondominated solutions 
when either MINSUM or preemptive versions of goal programming. 

Ignizio [81] suggested the obvious approach of setting more ambitious 
targets, although this would require an interactive process. Hannan [73] proposed 
sensitivity analysis to identify dominated solutions, and then correction by adjusting 
the model. 

8.9.2 Tradeoffs Across Preemptive Priority Levels 

A second major criticism of preemptive goal programming is the infmite tradeoff 
between preemptive priority levels. This violates the principles of normative 
preference functions, in that it bars a small sacrifice in the more important objective 
for a possibly major gain in the objective at the lower priority (Stewart [193]). We 
agree that this is a weak point in the method, and that goal programming sensitivity 
analysis should focus on this tradeoff. This ties in with a related weakness of goal 
programming in general, the setting of target levels. However, we feel that 
interactive methods make setting targets no more problematic than setting weights 
across incommensurate objectives. 

Analysis of the sensitivity of goal programming models has been 
approached in a variety of ways. Ignizio [80] presented a parametric approach to 
check the sensitivity of models to changes in parameters. Markowski and Ignizio 
[126, 127] analyzed duality in the context of preemptive goal programming models. 
Goedhart [65] used shadow prices on goal targets and resource budgets. In 
MIN SUM goal programming, weights on different objectives as objective function 
coefficients result in composite objectives that are quite abstract. Preckel, et al. 
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[156] suggested a procedure for analysis of objective function coefficients in this 
context. McCarl, et al. [130] analyzed goal programming shadow prices in depth. 

8.9.3 Setting Targets a priori 

Preemptive goal programming has also been criticized for requiring setting targets a 
priori (although it was never a requirement to our knowledge that goal 
programming could not be used interactively). Min and Storbeck [135] argued that 
the philosophy of goal programming is more descriptive than normative. It is not 
based on the same philosophy as those methods focusing on preference functions. 
The concept of preference requires definition of the objectives to be considered 
prior to the analysis. And yet the most promising use of computer models to aid 
decision models is to enhance decision maker learning. Learning implies that the 
measures of importance distinguishing between alternatives could be many, and 
those that are important may well depend on the context of the problem. Therefore, 
it seems hollow to worry about dominance when not all objectives may yet be 
included in the model. Romero [172] debated the merits of this argument with Min 
[134]. 

8.10 Interactive Goal Programming 

Interactive goal programming is a natural implementation of aiding decision makers 
identify solutions matching their preferences [188]. Adjusting targets for objectives 
in light of initial model results is an example of applying a mathematical 
programming model as a decision support system. Piech and Rehman [155] 
compared MINSUM goal programming with two other multicriteria methods, and 
concluded that while goal programming was easier to solve, it was inferior to the 
other methods with respect to the information provided to the decision maker 
because it gave only one solution. They did not consider the possibility of 
interactive use of goal programming. Piech and Rehman also noted that selecting 
weights for deviational variables was a problem. They overcame the difficulty of 
setting targets by using the individual optimal attainment levels for each objective. 

The preemptive form of goal programming also can be used interactively, 
as demonstrated by Franz and Lee [55]. In this approach, there is less ofa tie to the 
preference function view of decision making. Mote, et al. [139] demonstrated the 
use of multiple targets per objective in preemptive goal programming as a means to 
reflect the decision maker's preference. This allows tradeoffs among objectives to 
be expressed through the ordinal ranking of different target levels across objectives. 
Furthermore, interactive use of preemptive goal programming allows the decision 
maker to see the impact of various sets of priority rankings. The preemptive goal 
programming approach is viewed by some (including the authors of this paper) as 
being more appropriate for learning tools, in the spirit of decision support. This is 
best accomplished in an interactive setting. 
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Spronk and Matarazzo [192] developed a modified interactive goal 
programming model custom designed for fmancial planning. The model considered 
various means of reflecting the probabilistic aspects of an agricultural environment. 
Expected cash flow was corrected to reflect unexpected variations in factors 
influencing it. 

Reeves and Hedin [166] gave the following process for interactive 
implementation of goal programming. Nondominated solutions were guaranteed by 
using MIN SUM forms of goal programming. Alternative solutions were obtained 
by adding constraints to assure that targets for each specific objective was attained 
for that subproblem. If none of the solutions obtained were satisfactory to the 
decision maker, the process involved setting new target values, and regenerating 
solutions: 

1. Specify initial goal levels 

2. Generate ideal solutions 

- primary initial solution 

- alternatives by constraining each objective in turn 

3. If solution satisfactory, stop 

4. Revise goal levels 

5. Regenerate primary, alternative solutions 

Tamiz and Jones [204] gave a similar, more general interactive goal programming 
process: 

1. Generate initial feasible solution 

2. Decision maker review of initial solution 

3. If solution satisfactory, stop 

4. Obtain additional decision maker preference information 

5. Reformulate goal programming model 

6. Resolve model and return to decision maker review 
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Tamiz and Jones went on to discuss design issues, issues involving communication 
with the decision maker, and issues in parameter alteration. Goedhart and Spronk 
[67] extended the idea to match decentralized organizations. Their interactive 
planning process was: 

1. Central management set resources and goals 

Divisional management optimizes for their division 

2. Central management incorporates divisional proposals 

- selects intermediate solutions 

- imposes targets and budgets 

Divisional management selects projects 

- within targets and budgets 

3. Central management selects compromise solution 

- sets final budgets and targets 

Divisional management makes final activity selection 

This process was intended as an interactive framework where central management 
and divisional management would iterate within each of the three steps. Goedhart 
and Spronk called for more research on the implementation of this process. 

8.11 Goal Programming Modeling of Decision 

Maker Preference 

One of the most interesting approaches to modeling decision maker preference 
within goal programming models was one of the first, goal interval programming 
[29]. A step function of preference for different objectives was modeled. The 
model was not particularly tractible, however. 

The MINSUM form of goal programming requires preference weights be 
identified, reflecting both objective importance, as well as measurement scale. This 
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is the approach preferred by those who follow the normative view of decision 
analysis, where a preference function is assumed to exist, and once it is measured, 
the MINSUM goal programming model will yield a nondominated solution with 
respect to those objectives included in the model. Romero [173] argued that it 
makes no sense to include multiple targets for anyone objective, stating that those 
targets that did not affect the fmal solution were redundant. However, low weights 
may not tum out to influence solutions either. Minimization of cost may be an 
objective of a manager. That manager may give a much heavier weight to avoiding 
bad publicity, seeking to maintain the firm's image, which in MINSUM goal 
programming may jump to an extreme point of the model that involves high cost. 
That does not mean that cost is not a factor of consideration in the manager's 
preference function. On the other hand, there are contexts in which even small 
weights may make a difference in the final solution. Similarly, there are contexts 
where less important priority targets may make a difference in preemptive goal 
programming. Further note that in a normative context, multiple targets for the 
same objective can be used to reflect relative emphasis of strongly concave 
preference models. 

The identification of weights in MIN SUM goal programming has been a 
difficult task. Martel and Aouni [128] applied a form of fuzzy goal programming to 
incorporate PROMETHEE preference functions into a mathematical programming 
model. This was done in an attempt to answer the criticism that a priori aspiration 
levels are difficult to set, and that weight aggregation was difficult because of 
incommensurability. The PROMETHEE preference functions were presented as a 
means to flexibly assess decision maker preference (six forms of utility functions 
were available). However, in their simple example involving two decision variables 
and four goal constraints and thus 8 deviational variables (with 11 feasible comer 
points), they ended up with a model involving 27 constraints, 11 continuous 
variables, 19 0-1 variables, and 2 integer variables that took 270 iterations to solve. 
Tamiz and Jones [203] improved this model to the point that they had 15 
constraints, 12 continuous variables, 6 0-1 variables, 2 integer variables, that took 
only 56 iterations to solve. The idea of incorporating utility functions to represent 
decision maker preference appears to require substantial additional work. Jones and 
Tamiz [88] and Diaby and Martel [45] have presented additional work in this 
direction. Lam and Choo [104] presented other work applying goal programming 
to preference decomposition. 

8.12 Other Uses of Goal Programming as a Tool 

In addition to its use as a tool to support decision making, goal programming has 
been used in a variety of other ways. Active research into the use of goal 
programming as a mathematical tool continues in a variety of fields, including least 
absolute value regression, data envelopment analysis, and fuzzy set analysis. 
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The use of goal programming in data envelopment analysis has also been 
quite heavy in recent years. Athanassopoulos [4] developed an interface between 
goal programming and data envelopment analysis to integrate target setting and 
resource allocation in planning. When implemented in Greek local governmental 
planning, the method was shown to incorporate decision maker preferences while 
selecting efficient technologies. Athanassopoulos [5] proposed a goal programming 
formulation for assessing production functions within the European Union. 
Charnes, Gallegos and Li [31] applied a multiplicative data envelopment analysis 
model to the Latin American airline industry. The method included a goal 
programming model to estimate the coefficients to use in the DEA model. Huang 
and Li [78] also used goal programming to derive linear deterministic equivalents 
for a chance constrained formulation of data envelopment analysis. Retzlaff
Roberts and Morey [167] used goal programming in a stochastic two-stage DEA 
model because of alternate optimal solutions identifying significantly inefficient 
units. Giokas [63] compared four methods of analysis to measure the efficiency of 
hospitals. The method using goal prograrnming in conjunction with data 
envelopment analysis was found to be more reliable than the other methods for the 
data analyzed. 

Goal programming has been widely used in fuzzy set analysis. Early 
formulations were presented by Narasimhan [144] and Hannan [72]. Sutardi, 
Bector and Goulter [199] used fuzzy integer goal programming as a framework for 
sequential budgetary decision making in water investment planning. This model 
determined optimal return for each combination of funding levels while reflecting 
uncertain socio-technical and political factors. Mohammed [137] used deviational 
variables to transform a linear fuzzy programming model into a crisp formulation. 
Wang and Fu [214] presented a preemptive fuzzy goal programming model to 
reflect decision maker preference in an uncertain environment. Inuiguchi, et al. [83] 
applied possibilistic programming as a solution approach for a production planning 
problem containing ambiguous data and vague decision maker aspirations. As 
noted in the public policy application section, there have been many fuzzy goal 
programming applications applied to waste management and water quality 
management [108], forest management [147], and for other applications [163]. 

8.13 Conclusions 

Goal programming has proven to be very useful in many contexts. MINSUM goal 
programming provides a simple additive model of preference, complete with the 
requirement to identify weights describing tradeoffs among objectives. Preemptive 
goal programming provides a workable means for decision makers to learn about 
the implications of targets, given that interactive approaches are used. Goal 
programming has proven valuable as a means of implementing least absolute value 
regression, in data envelopment analysis, in stochastic modeling, and in many other 
applications. It continues to be applied to a wide variety of decision problems 
involving mUltiple, conflicting goals. 
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planning, the method was shown to incorporate decision maker preferences while 
selecting efficient technologies. Athanassopoulos [5] proposed a goal programming 
formulation for assessing production functions within the European Union. 
Charnes, Gallegos and Li [31] applied a multiplicative data envelopment analysis 
model to the Latin American airline industry. The method included a goal 
programming model to estimate the coefficients to use in the DEA model. Huang 
and Li [78] also used goal programming to derive linear deterministic equivalents 
for a chance constrained formulation of data envelopment analysis. Retzlaff
Roberts and Morey [167] used goal programming in a stochastic two-stage DEA 
model because of alternate optimal solutions identifying significantly inefficient 
units. Giokas [63] compared four methods of analysis to measure the efficiency of 
hospitals. The method using goal prograrnming in conjunction with data 
envelopment analysis was found to be more reliable than the other methods for the 
data analyzed. 

Goal programming has been widely used in fuzzy set analysis. Early 
formulations were presented by Narasimhan [144] and Hannan [72]. Sutardi, 
Bector and Goulter [199] used fuzzy integer goal programming as a framework for 
sequential budgetary decision making in water investment planning. This model 
determined optimal return for each combination of funding levels while reflecting 
uncertain socio-technical and political factors. Mohammed [137] used deviational 
variables to transform a linear fuzzy programming model into a crisp formulation. 
Wang and Fu [214] presented a preemptive fuzzy goal programming model to 
reflect decision maker preference in an uncertain environment. Inuiguchi, et al. [83] 
applied possibilistic programming as a solution approach for a production planning 
problem containing ambiguous data and vague decision maker aspirations. As 
noted in the public policy application section, there have been many fuzzy goal 
programming applications applied to waste management and water quality 
management [108], forest management [147], and for other applications [163]. 

8.13 Conclusions 

Goal programming has proven to be very useful in many contexts. MINSUM goal 
programming provides a simple additive model of preference, complete with the 
requirement to identify weights describing tradeoffs among objectives. Preemptive 
goal programming provides a workable means for decision makers to learn about 
the implications of targets, given that interactive approaches are used. Goal 
programming has proven valuable as a means of implementing least absolute value 
regression, in data envelopment analysis, in stochastic modeling, and in many other 
applications. It continues to be applied to a wide variety of decision problems 
involving mUltiple, conflicting goals. 
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Many studies have compared goal programming with other methods. We 
do not attempt to enumerate these studies, many of which focus on other multiple 
objective programming methods found in this volume. We would encourage 
everyone to look at these alternative methods. The following chapter, presenting 
reference point approaches, combines the goal programming idea of target levels 
with approaches to assure nondominated solutions (although as noted earlier in this 
chapter, we contend that this can be accomplished within goal programming as 
well). Ringuest [168] gave his view of the implications of goal programming to 
decision maker behavior, and presented a general goal programming model. 

Preemptive goal programming involves some controversy. It appears to us 
to be an excellent tool for decision maker learning. Further research into the 
interactive use of preemptive goal programming should enhance this value. On the 
other hand, if one believes strongly in normative preference functions, he or she 
should stick to MINSUM goal programming. Further research into preference 
function identification also holds promise. 
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9-2 REFERENCE POINT APPROACHES 

9.1 GENERAL ASSUMPTIONS AND FEATURES 

Reference point approaches were developed starting with research done at the 
International Institute for Applied Systems Analysis (IIASA) in Laxenburg n. 
Vienna, Austria, since 1980 - see Wierzbicki [45], Kallio et al. [20] - specifi
cally as a tool of environmental model analysis, although these approaches have 
found numerous other applications since that time. Soon, similar or equivalent 
approaches were developed, e.g. the weighted Chebyshev1 procedure by Steuer 
and Cho [42] or the satisficing trade-off method by Nakayama and Sawaragi 
[31]. Later, Korhonen and Laakso [22] drew attention to the fact that refer
ence point methods can be considered as generalized goal programming. This 
generalization tries to preserve main advantages of goal programming (see also 
Chapter 8 in this volume) and to overcome its basic disadvantages. 

The main advantages of goal programming are related to the psychologically 
appealing idea that we should set a goal in objective space and try to come 
close to it. Coming close to a goal suggests minimizing a distance measure 
between an attainable objective vector (decision outcome) and the goal vector. 

The basic disadvantage relates to the fact that this idea is mathematically 
inconsistent with the concept of vector-optimality or efficiency. One of the 
basic requirements - a generally sufficient condition for efficiency - for a func
tion to produce a vector-optimal outcome (when minimized or maximized) is 
an appropriate monotonicity of this function. But any distance measure is 
obviously not monotone when its argument crosses zero. Therefore, distance 
minimization cannot, without additional assumptions, provide vector-optimal 
or efficient solutions. 

Consider, for example, the simplest case when the goal vector is in itself 
an attainable decision outcome but not an efficient objective vector; then dis
tance minimization leads to the obvious solution with objectives equal to the 
goals. Even for convex outcome sets, either special tricks or rather restrictive 
assumptions are needed in goal programming to provide for efficiency of ob
tained decision outcomes. If, however, the set of attainable objectives is not 
convex - for example, discrete, as in Fig. 9.1a - then distance minimization 
cannot result, generally, in efficient outcomes. Both components of decision 
outcomes or objectives Yl and Y2 in this Figure are to be maximized and the 
efficient outcomes, denoted by circles, are to the "North-East" of the attainable 
outcome set; there are many intuitively reasonable vectors of goals, such as yl , 
which would produce inefficient outcomes, such as yl, if a norm as a measure 
of the distance is minimized. 

Nevertheless, setting a goal and trying to come close to it is psychologically 
appealing; the problem is "only" how to provide for efficiency of resulting out
comes. There are two ways to do it: either to limit the goals or to change the 
sense of coming close to the goals. 

1 In the original paper, the authors used the word Tchebycheff, not Chebyshev; the former is 
a German transliteration of this Russian name. 
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Figure 9.1: Examples of selections of discrete outcomes by using various approaches: a) 
goal programming or norm minimization; b) displaced ideal; c) max-min approach d) refer
ence point approach 

Trying to limit the set of goals is the essence of the displaced ideal method 
of Zeleny [54]: if we select goals that are sufficiently distant from the set of 
attainable outcomes, then we can prove that norm minimization will result 
only in efficient outcomes, no matter what norm we use or what properties 
the sets of attainable outcomes have. This is illustrated by Fig. 9.1b, where 
the goal y is in the displaced ideal area and the outcomes resulting from norm 
minimization are efficient. However, such limitation means precisely loosing 
the intuitive appeal of the goal programming approach: if we can set only 
unrealistic goals, the approach looses its basic advantages. 

Trying to change the sense of coming close to the goal changes the nature of 
the goal. Reference points are goals interpreted consistently with basic concepts 
of vector optimality; the sense of "coming close" to it is rather special and 
certainly does not mean distance minimization. If we accept the logic of various 
concepts of vector optimality, as discussed in earlier Chapters, then "coming 
close" to a given reference point should mean: 

• decision outcomes in some sense uniformly close to the given reference 
point, if the latter is not attainable - while the precise sense of uniform 
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closeness might be modified by demanding that the resulting decisions 
and their outcomes remain efficient i.e. vector-optimal; 

• decision outcomes precisely equal to the given reference point, if the latter 
is efficient, vector-optimal - which, somewhat simplifying, means attain
able without any surplus; 

• decision outcomes in some sense uniformly better than the given reference 
point, if the latter is attainable with some surplus - thus inefficient, not 
vector-optimal (where the sense of uniform improvement can be again 
variously interpreted). 

The first two cases coincide (almost) with goal programming; the third case 
is, however, essentially different: it means not "coming close" in any traditional 
sense, but "coming close or better" . 

This change of the sense of "coming close" is in fact deeply related to the 
discussion how people make decisions in reality and how computers should sup
port decisions. In turn, this is related to the concept of satisficing decisions of 
Simon [40] which was used as a description how people make actual decisions 
(particularly in large organizations) and the concept of quasi-satisficing deci
sions of Wierzbicki [46] which describes how a computerized decision support 
system should help a human decision maker. 

According to Simon, real decision makers do not optimize their utility when 
making decisions, for many reasons. Simon postulated that actual decision 
makers, through learning, adaptively develop aspiration levels for various im
portant outcomes of their decisions. Then they seek decisions that would result 
either: 

• in outcomes as close as possible to the aspiration levels, if the latter are 
not attainable (which corresponds to an optimization of decisions, but in 
the sense of the distance from aspiration levels); 

• in outcomes equal to aspiration levels, if the latter are attainable (which 
corresponds to stopping improvements in this case). 

We see that satisficing decision making can be in fact mathematically rep
resented by goal programming. In the case of attainable aspiration levels, the 
decision maker might learn to increase them, but usually not for current, only 
for future decisions. One can ask why; the most probable answer is that deci
sion making processes are difficult and this assumption reflects some inherent 
human laziness. Many further studies have shown that such a satisficing be
havior of a decision maker, though might seem peculiar, is very often observed 
in practice. In particular, the use of various reference levels by decision makers 
- such as aspiration levels, but including also reservation levels, very important 
e.g. in the theory of negotiations - has been repeatedly confirmed in practice. 

Independently, however, from the issue whether a real, human decision maker 
would (or could, or should) optimize in all cases, we can require that a good 
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computer program supporting decisions through model analysis should behave 
like a hypothetical, perfectly rational decision maker - with one important 
exception: the program should not "outguess" its user, the real decision maker, 
by trying to construct a model of her/his preferences or utility function, but 
should instead accept simple instructions which characterize such preferences. 

Thus, the methodology of reference point approaches assumes that the in
structions from a user to the computerized decision support system (DSS) have 
the convenient form of reference points, including aspiration levels and, possi
bly, reservation levels - and that the user is not asked how she/he determines 
the reference points. An essential departure from Simon asumptions and from 
goal programming techniques, however, is as follows: the methodology of ref
erence point approaches assumes that the computerized DSS tries to improve a 
given reference point, if this point is attainable. 

Therefore, the behavior of the DSS - not that of its user - is in a sense 
similar to perfect rationality. It does not minimize a norm, but optimizes a 
special function, called achievement function which is a kind of a proxy utility 
or value function (of the DSS) such that the decisions proposed by the DSS 
satisfy the three cases of "coming close or better" described above. Because of 
the difference - in the last case of "coming better" - to the satisficing behavior, 
we call such behavior quasi-satisficing. It can be compared to the behavior 
of a perfect staff which supports a manager or boss, who gives instructions to 
this staff in the form of reference levels. The staff works out detailed decisions 
which are guided by the given reference point. 

However, being perfect, the staff does not correct attainability estimates (a 
real, human staff might behave otherwise) and does not report to the boss that 
the reference point is attainable when it really is not. Instead, the staff proposes 
decisions that result in outcomes as close as possible to the desired reference 
point and reports these decisions together with their not quite satisfactory 
outcomes to the boss. If the reference point is attainable without any surplus, 
the perfect staff just works out the decisions how to reach this point and does 
not argue with the boss that a different point and different decisions might 
be better (if not specifically asked about such opinion). If the reference point 
is attainable with surplus, the perfect staff does not stop working and start 
gossiping over drinks - as Simon's model of satisficing behavior would suggest -
but works out decisions that would result in a uniform improvement of outcomes 
as compared to reference levels, and proposes such decisions together with 
improved outcomes to the boss. Obviously, only a computer program could 
behave all times in this perfect, quasi-satisficing manner. 

On the other hand, goal programming corresponds precisely to satisficing 
behavior: if the aspiration levels are attainable, then there exist attainable 
outcomes precisely equal to them, thus the corresponding distance is zero; since 
we cannot get distance less than zero, the optimization is stopped (the staff 
prepares drinks for relaxation). 

Thus, reference point optimization is a generalization of the goal program
ming approach to such cases when we can and want to improve (minimize or 
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maximize) certain outcomes beyond their reference points. For this purpose, a 
special class of order-consistent achievement functions, similar but not equiva
lent to distance functions, was developed, investigated in detail and applied in 
many examples and DSS's. 

We shall briefly indicate here some of general properties of such achievement 
functions. Vector optimization corresponds to a partial order of the objective 
space, which might be defined with the help of a positive cone D; if we e.g. want 
to maximize two objectives, the positive cone is just R~, the positive ortant 
of the plane. The mathematical definition of vector optimality implies the 
idea of choosing an achievement function whose level-sets represent or closely 
approximate the positive cone, possibly with vertex shifted to the reference 
point. 

Actually, the idea of using an achievement function with level sets precisely 
representing the positive cone is rather old and corresponds to the max-min 
approach2 , see e.g. Polak [34]. However, if the level sets of an achievement 
function precisely represent the shifted positive cone, the decisions and their 
outcomes obtained by a maximization of this function are only weakly efficient, 
i.e. the decision outcomes cannot be improved jointly but can be improved 
componentwise. This is illustrated in Fig. 9.1c: the decision outcomes y' and 
y" differ only in the coordinate Yl, hence might be both on the boundary of the 
cone y + R~; therefore, a max-min approach might produce as well y' as y", 
while y' is clearly worse than y" (if we maximize both objectives Yl and Y2). 
Such situations often occur in practical applications, particularly with linear or 
discrete-linear models; therefore, the max-min approach should be used with 
extreme care, if at all. 

For this reason, typical achievement functions used in reference point ap
proaches do not precisely represent, but only approximate the shifted positive 
cone y + D. A specific way of this approximation was developed to obtain an 
important theoretical property that each properly efficient decision outcome 
with a given prior bound on trade-off coefficients between objectives can be 
obtained when maximizing an achievement function with suitably chosen ref
erence point. This property can be guaranteed by selecting a cone Dc "slightly 
broader" than the cone D and choosing an achievement function which level 
sets precisely represent not the cone D, but the slightly broader cone Dc' Such 
theoretical property has two important practical consequences. 

The first consequence concerns the concept of proper efficiency with a prior 
bound on trade-off coefficients. This is, in fact, the most practical concept of 
efficiency or vector-optimality3: decision makers do not usually care if an ob
jective might be worsened by a small percentage of its value, if other objectives 
could be considerably improved instead. The second consequence concerns the 

2Contemporary, the max-min approach is used as a tool for multi-objective optimization e.g. 
in the OPTIX toolbox of MATLAB - however, without warning the user that it might result in 
weakly efficient outcomes. 
3 Although this concept might be the most difficult to express theoretically. 
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The first consequence concerns the concept of proper efficiency with a prior 
bound on trade-off coefficients. This is, in fact, the most practical concept of 
efficiency or vector-optimality3: decision makers do not usually care if an ob
jective might be worsened by a small percentage of its value, if other objectives 
could be considerably improved instead. The second consequence concerns the 

2Contemporary, the max-min approach is used as a tool for multi-objective optimization e.g. 
in the OPTIX toolbox of MATLAB - however, without warning the user that it might result in 
weakly efficient outcomes. 
3 Although this concept might be the most difficult to express theoretically. 
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possibility of obtaining any of such properly efficient objective outcomes. As 
opposed, for example, to a weighted linear aggregation of objectives, achieve
ment functions in reference point methods can produce any desired properly 
efficient outcome also in nonconvex, in particular in discrete cases. This is 
illustrated in Fig. 9.1d: the properly efficient outcomes y1 and y2 cannot be 
obtained by the maximization of a linear combination of their components Y1 
and Y2 with linear level sets (because y1 and y2 are contained in the convex 
cover of y3 , y4 and y5), but they can be reached by maximizing an achievement 
function with level sets either y1 + De or y2 + De. Observe that we can either 
choose y1 = y1 or, more broadly, y2 =f. y2; in the latter case, the maximal 
value of the achievement function indicates whether y2 is "more attainable" or 
"less attainable" than y2. 

9.2 BASIC CONCEPTS AND NOTATION 

In order to discuss the above general ideas and properties in more mathematical 
detail we need some notation and concepts. 

We distinguish here two parts of a model of a decision situation. One part, 
called here a preferential model, represents the preferences of the decision maker 
or DSS user (most often, the real users of decision support systems are not the 
final decision makers, but their advisors - analysts, modelers, designers etc.). 
In reference point methodology, the attention is not concentrated on the precise 
form of a preferential model; on the contrary, it is assumed that the preferen
tial model might change during the decision process and the decision support 
tools should be flexible enough to accommodate such changes. Therefore, we 
typically assume that the preferential model is very general, similar to the par
tial order of Pareto type (which corresponds just to the desire to maximize 
all decision outcomes) and that the specifics of this model (say, the selection 
of decision outcomes to be maximized) might also change during the decision 
process. 

The second part of a model of decision situation is called here a substantive 
model which represents the available knowledge about possible decisions and 
their possible outcomes. Therefore, we assume here that the general form of a 
substantive model is: 

(9.1) y = f(x,z), x E X o, Z E Zo, 

where x E Rn denotes a vector of decision variables, Z is a parameter vector 
fixed by the modeler, Xo is a set of admissible decisions which is usually de
fined by a set of additional inequalities or equations called constraints, y E R m 

is a vector of model outputs or decision outcomes which includes also various 
intermediary variables that are useful when formulating the model, even when 
determining the constraints - thus, the set Xo is often defined implicitly. The 
function f : R n x Zo -t R m that determines model outputs is usually defined 
also implicitly, often by a quite complicated model structure. In actual applica
tions, substantive models might express dynamic system behavior, uncertainty 
of results of decisions (while the outcomes y might be understood e.g. as math-
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ematical expectations of such results, see e.g. Ermolevet al. [6]), etc. Here we 
assume the abstract, simple form of substantive models; we shall even suppress 
the dependence of this model on parameters z by writing y = f(x). 

In such a case, Yo = f(Xo) is called the set of attainable outcomes. It should 
be stressed that this set is not given explicitly (even in the simple case when 
f is given explicitly) and we can only compute its elements by assuming some 
x E Xo and then determining the corresponding y = f(x) by simulating the 
model. 

The modeler, when analyzing the substantive model, might specify several 
model outputs as especially interesting - we call them objectives or criteria 
and shall denote by qi = Yj, forming an objective vector q E Rk - a vector 
in the objective space. While this vector and space might change during the 
decision process, we shall denote the relation between decisions and objectives 
by q = F(x, z) or shorten it to q = F(x). Qo = F(Xo) is called the set of 
attainable objectives. 

Since we can change minimization to maximization by changing the sign of an 
objective, we can as well assume that all objectives are, say, maximized. Recall 
that a Pareto-optimal decision and its outcomes are such that there are no other 
admissible decisions which would improve any objective without deteriorating 
other objectives. A closely related, but slightly broader and weaker concept is 
that of weakly Pareto-optimal decision and outcomes: these are such that there 
are no other admissible decisions which would result in a joint improvement of 
all objectives. This concept is actually too weak for applications, as already 
indicated. 

In fact, even the concept of Pareto-optimality is sometimes too weak for 
applications, in cases where we could improve significantly one objective com
ponent at the cost of an infinitesimally small deterioration of another objective. 
The (limits of) ratios of improvements and deteriorations of objectives, deter
mined at a Pareto-optimal decision, are called trade-off coefficients; we define 
properly Pareto-optimal decisions and outcomes as such that the corresponding 
trade-off coefficients are bounded. Even this concept is too weak for appli
cations, since the mathematical sense of "bounded" means "anything smaller 
than infinity". Truly important for applications are rather decisions and out
comes which are properly Pareto-optimal with a prior bound, i.e. such that a 
finite bound on trade-off coefficients is a priori given and satisfied. 

In each of these specific cases of Pareto-optimality (weak, proper, etc.), the 
sets of Pareto-optimal decisions and outcomes contain typically many elements, 
not just a singleton decision and its outcome. Thus, Pareto-optimality does not 
tell us, which decision to choose, it tells us only which decisions to avoid. This 
non-uniqueness of Pareto-optimal decisions has been considered a drawback in 
the classical decision analysis; thus, on top of a substantive model, a preferen
tial model was usually assumed in the form of at least weak order which could 
be specified by a given utility or value function whose maximum defined - hope
fully, uniquely - "the optimal" decision and outcome. However, in interactive 
decision support, when we assume that the preferences of the user of the DSS 
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(or the modeler, the analysts etc.) can change during the decision process, the 
non-uniqueness of Pareto-optimal decisions is an advantage, not a drawback. 
We need only an additional way of controlling the selection of Pareto-optimal 
decisions by parameters specified by the user. 

We recall that Pareto-optimality can be generalized by using a partial order 
implied by a positive cone, while the positive cone indicates what we understand 
by an improvement in the space of objectives. In the case of Pareto-optimality 
(if all objectives are maximized), the positive cone is the positive "part" of the 
objective space: 

(9.2) D=R~={qERk: qi~OVi=I, ... k}. 

A strictly positive cone (assuming an improvement of at least one objective 
component, which is needed for the definition of Pareto-optimality) can be 
written as: 

(9.3) iJ =R~ \ {O} = {q E Rk: qi ~ OVi = I, ... k; 3i = I, ... k: qi > O}. 

A strongly positive cone (assuming an improvement of all objective compo
nents, as needed in the definition of weak Pareto-optimality) is defined simply 
as the interior of the positive cone, I ntD = I ntR't-. 

In the case when some objectives (from 1 to k1 ) are maximized, some (from 
kl + 1 to k2 ) are minimized and some (from k2 + 1 to k) are stabilized (Le. kept 
close to a given reference level), the positive cone can be defined as: 

D = {qERk: qi~O,i=I, ... kl,qi~O,i=kl+I, ... k2' 

(9.4) qi=O,i=k2 +I, ... k}. 

Note that the cone describes only changes in objective values, hence qi = 0 
means that the objective component is kept equal to its reference level. If we 
define similarly the strictly positive cone as iJ = D \ {O} and the strongly pos
itive cone as IntD, we can give a more general definition of Pareto-optimality, 
called efficiency with respect to the cone D; the set of efficient objectives or 
outcomes is defined as: 

(9.5) 

and the set of efficient decisions is defined equivalently, while taking into 
account that q = F(x), as: 

(9.6) .Ko = {x E Xo : (F(x) + D) n F(Xo) = 0}. 

If D = R't- and iJ = R't- \ {O}, then the above definition of efficiency co
incides with the descriptive definition of Pareto-optimality given earlier. The 
generalization of weak Pareto optimality to weak efficiency is obtained by sim
ply replacing the strictly positive cone D with the strongly positive cone IntD: 

(9.7) Q~={qEQO: (q+lntD)nQo=0} 
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and: 

(9.8) Xo = {x E Xo : (F(x) + IntD) n F(Xo) = 0}. 

Note that if k > k2 (there are stabilized objectives), then the cone (9.4) 
has empty interior, hence Q(f = Qo and the concept of weak efficiency is quite 
useless in such a case. 

In order to define trade-off coefficients, we shall assume here, for simplicity, 
that all objectives are dimension-free and can be directly compared (we shall 
relax this assumption later). At an efficient point x E Xo with q = F(x) E Qo, 
if the efficient frontier is smooth at this point, the local trade-off coefficient 
tij(q) between maximized objectives qi, qj is defined as: 

(I) A 

t ( A) _ 1· qi - qi. 1· (I) _ A ij q - 1m sup (I) , 1m q - q, 
1-+00 q(l) EQo iij - % 1-+00 

(9.9) 

where the supremum is taken over all sequences {q(l)} ~l C Qo converging 
to q. If an objective i or j is minimized, the sign of the appropriate increment 
in the above equation must be changed, etc. For non-convex sets Qo, it is useful 
to define also global trade-off coefficients which might be greater (but not in 
the convex case) than the local ones: 

qi - iii = sup ... 
qEQ(;)(4) Qj - qj 

(9.10) = {q E Qo : qj < iij, qi ~ iii,} 

with the signs of inequalities in the definition of Q(j) (q) appropriately changed 
for minimized objectives. 

The computation of trade-off coefficients according to their definitions is a 
difficult problem, see e.g. Kaliszewski [19]. It turns out that we can obtain 
bounds on trade-off coefficients if we express the concept of proper efficiency 
in terms of modified positive cones. There are various approaches to such 
representation - see e.g. Henig [16], Sawaragi et al. [38]. It can be shown 
- see Wierzbicki [48, 50], Kaliszewski [19] - that properly efficient outcomes 
and decisions with a prior bound M on trade-off coefficients can be defined 
as weakly efficient outcomes and decisions with respect to a "slightly broader" 
positive cone. For this purpose, we define first c = 1/(M - 1) (note that there 
is no sense in considering M :s; 1) and define an c-neighborhood IntD" of the 
positive cone D: 

(9.11) IntD" = {q E Rk : dist(q,D) < ell q II}, 
where we could choose any norm in Rk and a (Haussdorff) concept of distance 
between the point q and the set D in order to obtain an open4 set IntD". 

4The concept of distance can correspond even to another norm in Rk than on the right-side, 
since all norms in Rk are topological equivalent. 
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However, in order to obtain the needed bound on trade-off coefficients, it is 
useful to choose rather specific norms: h on the right-hand side and mixed II 
and Ioo for the distance on the left-hand side. Without specifying the details 
here5 we note that, if D = Ri, in case of Pareto-optimality, the cone Do of the 
form (9.11) can be also written as: 

k 

Do {q E Rk : q = L Aj<Iij), Aj ~ O}, 
j=1 

<Iij) (-10, -10, .•. 1 + (k - l)cU) , ... , -10, _c)T; 

k 

Do = {q E Rk : -qj ~ 10 L qi, j = 1, ... k} 
i=1 

k 

(9.12) { q E Rk: min qi + 10 '"' qi > O}. 
l<i<k ~-

- - i=1 

The last representation is particularly important: Do can be represented as 
a zero-level set of the function minl~i~k qi + 10 L:~=1 qi· 

Note that IntDo "10 even if IntD = 0 (as stressed before, the later holds for 
cones D of the form (9.4) including some stabilized objectives). Moreover, if we 
define weakly efficient solutions with respect to the "broader" cone IntDo' we 
can prove that they are equivalent to properly efficient solutions with (global, 
not only local) trade-off coefficients bounded a priori by M = 1 + 1/10; we 
shall call such outcomes and decisions c-properly efficient. Thus, the sets of 
c-properly efficient outcomes and c-properly efficient decisions can be defined 
as: 

(9.13) Qgo = {CI E Qo : (4 + IntDo) n Qo = 0} 

and: 

(9.14) xgo = {x E Xo : (F(x) + IntDo) n F(Xo) = 0}. 

The traditional proper efficiency - with only an existential bound on trade
off coefficients - can be then defined by: 

(9.15) 

In any case (convex or not) the definitions of various types of efficiency imply 
that: 

(9.16) 

After specifying any variables in a model as objectives qi, we should first 
know - at least approximately - the ranges in which these variables might 

5See Wierzbicki [48, 50] for more detailed derivation. 
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vary. This is also important because we shall often aggregate objectives - that 
is, combine them into one function (not necessarily by summation) - and many 
objectives might have various units of measurement and must be re-scaled to 
dimension-free units before aggregation. Thus, any system supporting vector 
optimization must include a function of estimating such ranges. 

The usual way of such estimation is to compute the ideal or utopia point 
by optimizing separately each objective and to estimate its counterpart - the 
nadir point (a lower bound on objectives that are maximized, upper on those 
minimized). While the utopia point components do not usually change, if we 
change the number of objectives selected (we might need to compute utopia 
components for new objectives, but they do not influence old objectives), the 
nadir point components do change. 

This is because of the difference in definitions of the utopia and nadir points. 
The utopia point consists of best values of objectives in both the sets Qo and 
Qo - but it is simpler to compute the best values in the larger set Qo. The 
nadir point consist of worst values of objectives, but only in the smaller set 
of efficient outcomes Qo - there might be worse values, than at nadir point, 
in the set of non-efficient points Qo \ Qo. Although the computations of the 
nadir point might be quite difficult (see e.g. Korhonen et al. [23]), the infor
mation contained in this point is quite important; therefore, we need at least 
an approximation of the nadir point. 

A simple way (though certainly not the best) of such approximation of nadir 
components is to take the worst values of objective components that occur 
while computing the best values of other components during the calculations 
of the utopia point: 

qi,uto 

= 
qi,uto = 

i 
(1) 

qi,nad 

(9.17) (1) 
qi,nad 

max qi, q(i) = argmaxqi, 
qEQo qEQo 

1, ... ,k1 (for maximized objectives), 

min qi, q(i) = argmin qi, 
qEQo qEQo 

k1 + 1, ... ,k2 (for minimized objectives), 

m1·n qA(j) . 1 k ( ) ,z= , ... ,1 max, 
l~j~k • 

max q~j), i = k1 + 1, ... ,k2 (min). 
l~j~k 

Such worst values qt~ad might be still better than the actual nadir compo
nents (they are equal to nadir components only in some special cases, including 
the case k = 2). Thus, in order to estimate the nadir approximately, it is 
sufficient to increase the range qi,uto - q~,l~ad somewhat arbitrarily. There exist 
various ways of further improvement of estimates of nadir components, see e.g. 
Lewandowski at al. [25]. In any case, we can assume that there are defined 
(either arbitrarily or by computing the utopia point and estimating the nadir 
point) some estimates of ranges of each objective values: 
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(9.18) qi,lo ~ qi ~ qi,up, i = 1, ... ,k, 

where qi,up for maximized objectives (qi,lo for minimized ones) is at least as 
high (low) as the corresponding utopia point component and the range qi,up -
qi,lo is approximately as large as the range utopia-nadir. First after specifying 
such ranges, we can reduce objectives to dimension-free (e.g. percentage) scales 
and then speak about relative importance of criteria, their weights, interpret 
the trade-off coefficients, etc. 

9.3 REFERENCE POINTS AND ACHIEVEMENT FUNCTIONS 

We assume here that for each objective - which can be maximized, minimized 
or stabilized - reference levels in the form of either aspiration levels iii (which 
would be good to achieve) or, additionally, reservation levels qi (which should 
be achieved if it is at all possible) are specified by the modeler. These reference 
levels will be used as main interaction parameters by which the user of a DSS 
controls the selection of decisions and their outcomes. The values of these 
reference levels are subject to reasonability constraints only, given lower and 
upper bounds qi,lo, qi,up for each objective: 

(9.19) qi,lo < iii 
qi,lo < iii 

< qi,up, i = 1, ... ,kl 
< qi,up, i = kl + 1, ... ,k2 

(max), 
(min). 

For stabilized outcomes we can use two pairs of reservation and aspiration 
levels: one "lower" pair qi,lo < iii,lo as for maximized outcomes and one "upper" 
pair iii,up < qi,up as for minimized ones. 

A way of aggregating the objectives into an order-consistent achievement 
function6 consists in specifying partial achievement functions CTi(qi, iii) or 
CTi(qi,iii,qi) which should: 

a) be strictly monotone consistently with the specified partial order - in
creasing for maximized objectives, decreasing for minimized ones, increasing 
below (lower) aspiration level and decreasing above (upper) aspiration level for 
stabilized ones; 

b) assume value 0 if qi = iii, Vi = 1, ... , k, and aspiration levels are used 
alone - or assume value 0 if qi = qi' Vi = 1, ... , k, and assume value 1 if 
qi = iii, Vi = 1, ... , k, if both aspiration and reservation levels are used. 

This seeming inconsistency results from the fact that the number 0 is more 
important than the number 1: if the aspiration levels are used alone, we just 
check with the help of the sign of an achievement function, whether they could 
be reached. In such a case, it is useful to define partial achievement functions 
with a slope that is larger if the aspiration levels are closer to their extreme 
levels: 

6For a more detailed theory of such functions see e.g. Wierzbicki, [48]. 
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(9.20) 

(J"i(qi, iii) 

(J"i(qi, iii) 

(J"i(qi, iii) 

(qi - iii)/(qi,up - iii) (max), 

(iii - qi)/(iii - qi,lo) (min), 

= { (iii - qi)/(qi,up - iii), if qi > iii } (stab). 
(qi - iii)/(iii - qi,lo), if qi ~ iii 

where iii,lo = iii,up = iii was assumed for stabilized objectives. An alternative 
way is to use piece-wise linear functions, e.g. to change the slope of the partial 
achievement function depending on whether the current point is above or below 
the aspiration point: 

(J"i(qi, iii) { (qi - iii)/(qi,up - iii), iii < qi < ~i,up }, 
(max) (3(qi - iii)/(iii - qi,lo), qi,lo < qi < qi 

(J"i(qi, iii) { (iii - qi)/(iii - qi,lo), qi,lo < qi < iii } 
(min) (3(iii - qi)/(qi,lo - iii), iii < qi < qi,up , 

(J"i(qi, iii) { (qi,up - qi)/(~i,uP - iii), iii < qi < ~i,up }, = 
(stab) (qi - qi,lo)/(qi - qi,lo) , qi,lo < qi < qi 

(9.21) 

where the coefficient (3 > 0 is selected in such a way that the functions are 
not only monotone, but also concave (thus can be expressed as minima of their 
component linear functions, which is useful for their applications together with 
linear models). 

If both aspiration and reservation levels are used, it is more useful to define 
the partial achievement functions as piece-wise linear functions e.g. of the form: 

{ 1 + a(q, ~ ii,)/(q".~ - ii,), iii < qi < q".p} (J"i(qi, iii, qi) = (qi - qi)/(qi - qi)' iii < qi < qi , 
(max) (3(qi - qi)/(qi - qi,lo), qi,lo < qi < iii 

{ 1+ ~(ii~ -")(ii~ -:.,,10)' qi,lo < qi < ii, } (J"i(qi, iii, qi) (qi q.)/(qi q.), iii < qi < iii , 
(min) (3(qi - qi)/(qi,lo - qi)' iii < qi < qi,up 

{ iJ(Q~,., ~ q,)/(q~,., ~ q~:.,), iii, up < qi < ~"., } 
(J"i(qi, iii, qi) (qi,up q.)/(qi,up q.), iii < qi < qi,up 

(stab) (qi - qi,lo)/(iii - qi,lo), iii,lo < qi < iii . 
(3(qi - qi,lo)/(qi,lo - qi,lo), qi,lo < qi < iii,lo 

(9.22) 

The coefficients 0:, (3 should be positive and chosen in such a way that partial 
achievement functions are not only monotone, but also concave. Other forms of 
piece-wise linear partial achievement functions satisfying these conditions are 
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also possible - e.g. an achievement function for stabilized objectives might be 
defined as greater than 1 inside the interval [iii,lo; iii,up] if iii,lo < iii,up, see Fig. 
9.2. 

If the values of ai(qi,iii,qi) would be restricted to the interval [0;1], then 
they could be interpreted as fuzzy membership functions J.Li(qi, iii, qi) (see e.g. 
Zadeh [53], Seo et al. [39], Zimmermann et al. [55]) which express the degree of 
satisfaction of the modeler with the value of the objective qi. More complicated 
forms of such fuzzy membership functions can be also used, see e.g. Vincke [44], 
Fodor and Roubens [7], Granat et al. [12]; for illustrative simplicity, we shall 
not consider these more complicated forms here. 

Figure 9.2: The difference between a partial achievement function ai (qi, iii, qi) and a 
corresponding fuzzy membership function J.Li(qi, iii, qi) in the case of a stabilized objective. 

A partial achievement function can be looked upon as simply a nonlinear 
transformation of the objective range satisfying some monotonicity require
ments. The essential issue is how to aggregate these functions as to obtain a 
scalarizing achievement function with good properties for vector optimization 
or multi-objective model analysis. There are several ways of such aggregation. 
One way is to use fuzzy logic and select an appropriate representation of the 
"fuzzy and" operator7 . The simplest operator of this type is the minimum 
operator: 

(9.23) J.L(q, q, q) = 1\ J.Li(qi, iii, qi) = l~l~k J.Li(qi, iii, qi') 
1~i9 - -

71n selecting "fuzzy and" operator for aggregation, we actually assume that all objectives 
are similarly important and non-compensative. This assumption is fully justified in multi
objective model analysis (we do not ask the modeler for reasons why she/he has selected a 
given set of objectives), but it might be not necessarily satisfied in other cases of aggregation 
of attributes. 
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which, however, would result only in weakly Pareto-optimal or weakly ef
ficient outcomes when used for multi-objective analysis. To secure obtaining 
c-properly efficient outcomes, we have to augment this operator by some linear 
part (compare the last expression for the cone DE in (9.12)). The corresponding 
overall membership function would then have the form: 

k 

(9.24) J.t(q, q, q) = ( min J.ti(qi,iii,ch) + 10 " J.ti(qi, iii, qi))/(l + kc). 
1<i<k ~ 

- - i=1 

An interpretation in terms of membership functions can be in fact used 
in a graphic interaction with the modeler; however, membership functions 
J.ti(qi,iii,qi) and J.t(q,q,q) are not strictly monotone if they are equal to 0 
or 1. Therefore, inside a vector optimization system, a slightly different overall 
achievement function must be used, with values not restricted to the interval 
[0;1]: 

(9.25) 

In both above equations, 10 > 0 is the same coefficient as the one used when 
defining the proper c-efficiency, with a prior bound M = 1 + 1/10 on correspond
ing trade-off coefficients. Actually, this bound limits here trade-off coefficients 
not between various objectives qi and qj, but between their transformed values 
O"i(qi,iii,qi) and O"j(qj,iij,qj); in order to obtain bounds on original trade-off 
coefficients between qi and qj, it is necessary to take into account the current 
slopes of partial achievement functions. However, if these slopes have prior 
bounds, the original trade-off coefficients will also have prior bounds. 

The above derivation of an order-consistent achievement function from a 
"fuzzy and" operator is not the only one possible. In fact, simpler versions 
of order-consistent achievement functions were used originally. Some of such 
versions can be looked upon as a simplification of function (9.25). For exam
ple, suppose only aspiration levels iii are used, all objectives are maximized 
and dimension-free and the partial achievement functions have a simple form 
O"i(qi, iii) = qi - iii. Then the order-consistent achievement function takes on 
the form: 

(9.26) 

where we do not have to subdivide by 1 + kc because only the value 0, not 1, 
of this function is significant. This function can be seen as a prototype order
consistent achievement scalarizing function. It is monotone with respect to the 
cone IntDE and its zero-level set represents this cone - compare (9.12): 

(9.27) q + IntDE = {q E Rk: O"(q,q) > O}. 

Since function (9.25) is also strictly monotone with respect to the cone IntDE, 
we have: 
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• Sufficient condition for e-proper efficiency. For any q, q (with compo
nents strictly contained in the ranges [qi,lo; qi,up)) a maximal point of a( q, q, q) 
with respect to q E Qo = F(Xo) is a properly efficient objective vector with 
a prior bound on trade-off coefficients and, equivalently, a maximal point of 
a(F(x), q, q) with respect to x E Xo is a properly efficient decision with a prior 
bound. 

In order to derive a corresponding necessary condition, consider a(q, q, q) 
as a function not of q = (ql, . .. qi, ... qk)T but of their transformed values y = 
(Yl, ... Yi, ... Yk)T,Yi = ai(qi, iii, qi)· In the transformed space, the reservation 
point y = 0, since Yi = ai(qi,iii,qi) = O. Denote by p(y) = a(q,q,q) the 
achievement scalarizing function in the transformed space. Then, according to 
(9.12), we can write the cone Dc (actually, with its vertex shifted to y, which 
is conveniently equal to 0 in this case) in the following form: 

(9.28) y + DE = {y E Rk: p(y) 2: O} 

and, when taking into account the monotonicity of p(y), we obtain similarly as 
in (9.27): 

(9.29) y + IntDE = {y E Rk: p(y) > O}. 

Now, suppose q = F(x) is a properly efficient outcome of an admissible decision 
x E Qo with such bounds on trade-off coefficients that they are less than 
M = 1 + l/e in the transformed space of Yi = ai(qi,iii,qi). Let us shift the 
reservation point to this properly efficient point, q = q. According to the 
definition of the e-proper efficiency, the cone y + IntDE cannot intersect the 
(transformed by Yi = ai(qi, iii, qi)) set Qo· However, relation (9.29) indicates 
that, in such a case, Y = Y = 0 corresponding to q = q will be a maximal point 
of p(y) in the transformed set Qo, or, equivalently, q will be a maximal point 
of a( q, q, q) with respect to q E Qo. 

Such a way of deriving the necessary conditions of efficiency is actually an 
adaptation of the concept of separation of sets to the case of nonlinear sepa
rating functions which represent conical sets: the function p(y) separates (by 
a cone) the sets y + Dc and transformed Qo, if q = q, see Wierzbicki [48, 50]. 
We conclude that we have: 

• Necessary condition for e-proper efficiency. For any properly efficient 
q = F(x) with appropriate prior bounds on trade-off coefficients, there exist q 
and/or q such that q maximizes a(q, q, q) with respect to q E Qo = F(Xo). 

Actually, we can prove even more - see Wierzbicki [48]: the user can influ
ence the selection of q = F(x) Lipschitz-continuously by changing q and/or q 
(except in cases when the set of properly efficient objectives is disjoint). We 
say that this selection is continuously controllable. 

Moreover, the scaling of the partial achievement functions and the scalarizing 
achievement function is such that the user can draw easily: 

• Conclusions on the attainability of reservation and/or aspiration 
points. If the maximal value of a( q, q, q) with respect to q E Qo = F(Xo) 
is below 0, it indicates that the reservation point is not attainable, q f/. Qo = 
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achievement function is such that the user can draw easily: 
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F(Xo), and also that there are no points q E Qo dominating q, i.e. {q E 
Rk: q 2:: q} n Qo = 0. If this maximal value is 0, it indicates that the 
reservation point is attainable and properly efficient. If this maximal value 
is 1, the same can be said about the aspiration point q. Similar conclusions 
concerning the values between 0 and 1 and above 1 can be made. If we use 
aspiration levels alone, there is only one critical value 0 of the achievement 
function corresponding to the aspiration point q. 

This property justifies the name "achievement function" since its values mea
sure the achievement as compared to aspiration and reservation points. The 
name "order-consistent" achievement function is used to indicate that the func
tion is strictly monotone with respect to the cone IntDe, hence it preserves the 
partial order implied by the cone, and its zero-level-set corresponds to the set 
q + De, hence it represents this order. 

The achievement function a( q, q, q) - and other similar functions - is non
differentiable. Moreover, the maximum of this achievement function is in most 
cases attained at its "corner", i.e. at the point of nondifferentiability. In 
the case of linear models, the non differentiability of the achievement function 
a (q, q, q) does not matter, since the function is concave and its maximization 
can be equivalently expressed as a linear programming problem by introducing 
dummy variables - see next section. 

In the case of nonlinear models, however, optimization algorithms for smooth 
functions are more robust (work more reliably without the necessity of adjust
ing their specific parameters to obtain results) than algorithms for nonsmooth 
functions. Therefore, there are two approaches to the maximization of such 
achievement functions. One is to introduce additional constraints and dummy 
variables as for linear models. Another is a useful modification of the achieve
ment function by its smooth approximation, which can be defined e.g. when us
ing an lp norm (with p > 2, because a circle or a ball rather badly approximates 
the piece-wise linear achievement function; it would be best approximated by 
very large p, but usually p = 4 ... 8 suffices, since larger p result in badly condi
tioned optimization problems). We quote here such an approximation only for 
the case of using aspiration point q alone, assuming that partial achievement 
functions ai(qi, iii) ~ 1 e.g. ai(qi, iii) = 1 if qi = qi,up for maximized objectives): 

1 k 
a(q, q) = 1- (k 2:(1- ai (qi , iii))p)l/P, 

i=l 

(9.30) 

although a similar formula can be given also when using both q and q, see J. 
Granat et al. [12]. 

We stress again that a( q, q), even in its above form, is not a norm or a 
distance function between q and q; it might be equivalent to such a distance 
function only if all objectives are stabilized. As discussed above, a norm would 
not preserve needed properties of monotonicity for maximized or minimized 
objectives. 

Until now we discussed reference (reservation and/or aspiration) points as 
if they were simple collections of their components. However, for more compli-
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cated models - e.g. with dynamic structure - it is often advantageous to use 
reference profiles or reference trajectories of the same outcome variable chang
ing e.g. over time. Suppose (see Kallio et al. [20]) that a model describes 
ecological quality of forests in a region or country, expected demand for wood, 
forestry strategies and projected prices for some longer time - say, next fifty 
years because of the slow dynamic of forest growth. The user would then in
terpret all model variables and outcomes rather as their profiles over time or 
trajectories than as separate numbers in given years. Mathematically, we can 
represent such a profile as a vector in a - say, fifty-dimensional - space, hence 
the methodology presented above is fully applicable. From the user point of 
view, however, it is much easier to interpret model outcomes and their reference 
points as entire profiles. Psychological studies show that it is too difficult to 
evaluate jointly more than seven to nine outcomes. However, this applies to 
separate numbers, not to their profiles or trajectories. A mental evaluation of 
such profiles, particularly if they are graphically presented, is not as difficult 
as that of a large number of separate variables. There are also other issues 
related to applications of reference trajectory optimization to dynamic models. 
For example, the user might like to specify the growth ratios or the increments 
of selected model outcomes as an additional objective trajectory; the dynamic 
properties of the model might be exploited when preparing or executing opti
mization of model outcomes, etc. - see Makowski et al. [29] and Wierzbicki 
[49]. 

9.4 NEUTRAL AND WEIGHTED COMPROMISE SOLUTIONS 

By a neutral compromise solution, we understand typically in multi-criteria 
analysis a decision with outcomes located somewhere in the middle of the ef
ficient set; a more precise meaning of "somewhere in the middle" specifies the 
type of a compromise solution. This notion was investigated in detail first by 
Zeleny, see e.g. [54). He has shown (for the case of maximizing all objectives) 
that, in order to be sure of efficiency of solutions minimizing the distance even 
if the set Qo is not convex, the reference point q for a scalarizing function 
s( q, q) =11 q - q II should be taken at the utopia point, called also ideal point, 
q = quto, or "above to the North-East" of this point, at a "displaced ideal" or 
simply upper bound q = qup E quto + D. Then, when minimizing a distance 
related to an 1p norm with 1 :::; p < 00, properly efficient (Pareto-optimal) 
compromise solutions are obtained. The Chebyshev (1(Xl) norm results in only 
weakly efficient solutions, unless its minimization is supplemented by a lexi
cographic test. Dinkelbach and Isermann [5] have shown that an augmented 
Chebyshev norm - with a linear part added such as in achievement functions 
discussed earlier in this chapter - results in properly efficient solutions. 

As we have stressed earlier, in order to use a norm we must be sure that all 
objective components are of the same dimension or dimension-free. Thus, we 
have anyway to rescale the increments of objectives - from I qi - qi,up I to I qi -

qi,up I / I qi,up -qi,lo I (where qi,lo is a lower bound, e.g. an approximation of the 
nadir point components). After such rescaling, when fixing the reference point 
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at the upper bound point, we can define neutral compromise solutions (actually, 
neutral compromise solution outcomes) with equal weighting coefficients as: 

argmin (t 1 qi,up - qi IP ) liP, 1 ~ p < 00, 

qEQo i=l 1 qi,up - qi,lo Ip 

q~~2 argmin (m?X 1 qi,up - qi 1 ) , 

qEQo 1::;'9 1 qi,up - qi,lo 1 

q(l,oo) argmin ( max 1 qi,up - qi 1 + € t 1 qi,up - qi 1 ) 

neu qEQo l::;i::;k 1 qi,up - qi,lo 1 i=l 1 qi,up - qi,lo 1 ' 

the last one with some small € > O. As noted above, q~~J might be only weakly 
efficient - and not uniquely defined in such a case. However, we can select 
then an efficient solution by additional testing, e.g. an additional lexicographic 
optimization, see Ogryczak et al. [32]. 

The neutral solution q~~~) can be obtained also in a different way, since it 
can be shown that minimizing the distance induced by the augmented Cheby
shev norm from the upper bound point is equivalent to maximizing the follow
ing order-consistent achievement function (which is just a re-scaled version of 
(9.26)): 

_ k _ 

(9.32) . qi - qi,mid + '""' qi - qi,mid mm €~ , 
l::;i::;k qi,up - qi,lo i=l qi,up - qi,lo 

qi,up + qi,lo 

2 
with the reference point qmid located precisely in the middle of the ranges 
between upper bound and lower bound point. 

However, such neutral solutions as defined above might serve only as a 
starting point for interaction with the user. More general is the concept 
of weighted compromise solutions. Suppose that the weighting coefficients 
ai > 0, Vi = 1, ... k, L~=l ai = 1, are given (by the decision maker or by 
a special identification method, e.g. Analytical Hierarchy Process as proposed 
by Saaty [37]). Once the weighting coefficients a are determined, the weighted 
compromise solutions q~) are defined by: 

( 

k ) lip q. - q' p 
argmin L af 1 "up , 1 p , 1 ~ p < 00, 

qEQo i=l 1 qi,up - qi,lo 1 

(9.33) 

A (00) argmin (max a 1 qi,up - qi 1 ) 
q", qEQo l::;i::;k 'I qi,up - qi,lo 1 ' 

qA~l,oo) __ . ( 1 qi,up - qi 1 + ~ 1 qi,up - qi 1 ) 
~ argmm max ai € ~ai . 

qEQo l::;i::;k 1 qi,up - qi,lo 1 i=l 1 qi,up - qi,lo 1 

While the concept of weighted compromise results in sufficient conditions of 
Pareto-optimality - all weighted compromise solutions q~) for 1 ~ p < 00 are 
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properly efficient (Pareto-optimal) - necessary conditions are more complicated. 
We cannot generally say that we can obtain any properly efficient outcome 
desired by the decision maker by changing weighting coefficients. Moreover, 
the character of the dependence of q~) on Q is not easy to interpret. In some 
applications, this might be a procedural advantage; however, in the case of a 
decision maker who is an analyst, designer or a modeler, the lack of a clear 
interpretation of this dependence is disadvantageous. 

There is, fortunately, one case in which the dependence of a weighted com
promise solution on weighting coefficients is easy to interpret, namely the 
case of Chebyshev norms. We shall discuss here the augmented Chebyshev 
norm and q~l,oo). Suppose we choose a weighting coefficient vector Q with 
Qi > 0, I:~=1 Qi = 1, and a scalar coefficient 'TI ~ l/Qi, Vi = 1, ... , k, in order 
to assign to each Qi an aspiration level: 

(9.34) - qi,up - qi,lo 
qi = qi,up -

'TIQi 
Then we obtain qi,lo ~ iii < qi,up Vi = 1, ... k because of the inequality satisfied 
by 'TJ - although the aspiration levels iii might change with 'TJ, in which case 
equation (9.34) describes a line segment in Rk starting with qlo and ending at 
qup as 'TJ -t 00. Conversely, for any aspiration point q such that qi,lo ~ iii < 
qi,up Vi = 1, ... k we can set: 

qi,up - qi~lo It qj,up - qj,lo 

qi,up - qi j=l qj,up - qj 

k 

(9.35) 'TJ = L qj,up - q~lo , 

j=l qj,up - qj 

which defines the inverse to the transformation (9.34). We can interpret this 
inverse transformation in the following way: the ratios Wij = Qi/Qj of impor
tance of criteria are defined by selected aspiration levels as an inverse ratio of 
their relative distances from upper bound levels: 

(9.36) 
- Qi _ qj,up - iij 

Wij - --
Qj qi,up - qi 

The transformation (9.35) has been used by Steuer and Choo [42] in a procedure 
using the augmented Chebyshev norm and q~l,oo), but controlled interactively 
by the decision maker who specified aspiration points (called definition points 
by Steuer and Choo) that were used to define the weighting coefficients. The 
outcomes of such a procedure are properly efficient; Steuer and Choo show that 
any properly efficient outcome can be obtained by this procedure for convex 
sets Qo. 

However, we can show more: under transformations (9.34), (9.35), the 
weighted compromise solution q~l,oo) can be equivalently obtained by the max
imization of an order-consistent achievement scalarizing function with such as
piration levels used as a reference point. This is because we have: 
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(9.37) qi,up - qi (qi,UP - qi) / 
(¥i = T/ = 

qi,up - qi,lo qi,up - qi 

therefore, since qi,up ~ qi ~ qi,lo: 

(9.38) 

Hence, minimizing the weighted distance induced by the augmented Cheby
shev norm from the upper bound point is equivalent to maximizing the fol
lowing order-consistent achievement function (again defined as in (9.26) with 
re-scaling): 

(9.39) 

with the aspiration point q defined as the transformation (9.34) of the vector 
of weighting coefficients (¥ with any (sufficiently large) parameter T/. 

Moreover, even if the set Qo is not convex (or even if it is a discrete set), 
we can take any properly efficient outcome it with trade-off coefficients scaled 
down by the deviations from the upper levels and bounded by: 

(9.40) 

At any such point, we can define a reference point and weighting coefficients 
- by taking q = it and applying the transformation (9.35) - in such a way 
that the maximal point of a(q, q), equal to the weighted compromise solution 
it~l,oo), coincides with it. This can be shown by an appropriate modification 
of the argument on separating the set Qo and the conical set it + lnt Dc by a 
level set of the function a( q, q), as discussed in the previous section, see also 
Wierzbicki [50]. 

9.S MODELING FOR MULTIOBJECTIVE ANALYSIS 

Reference point methods can be used for a wide variety of substantive model 
types. However, methods of optimization of an achievement function attached 
to a complicated model depend very much on the model type. Moreover, this 
concerns even model building: constructing a complicated model is an art and 
requires a good knowledge not only of the disciplinary field concerned, but also 
of the properties of models of the particular class. 

There exist today special software tools for building analytical models, called 
generally modeling systems or algebraic modeling languages - such as GAMS, 
AIMMS, AMPL, see e.g. Brooke et al. [3], Bisschop et al. [2], Fourer et al. [8]. 
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to a complicated model depend very much on the model type. Moreover, this 
concerns even model building: constructing a complicated model is an art and 
requires a good knowledge not only of the disciplinary field concerned, but also 
of the properties of models of the particular class. 

There exist today special software tools for building analytical models, called 
generally modeling systems or algebraic modeling languages - such as GAMS, 
AIMMS, AMPL, see e.g. Brooke et al. [3], Bisschop et al. [2], Fourer et al. [8]. 
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However, they usually represent the perspective of single-objective optimization 
and can be adapted to multiobjective model analysis only through additional 
tricks. 

Linear models provide a good starting point in modeling. In the case of 
large-scale models, a practical way to develop a model is to prepare first a 
linear version and then augment it by necessary nonlinear parts. 

In a textbook, the standard form of a multiobjective linear programming 
problem is usually presented as: 

(9.41) 

(9.42) 

"maximize"(q = ex E Rk), 
xEXo 

Xo = {x ERn: Ax = bERm, I:::; x:::; u}, 

where "maximize" might either mean single-objective optimization if q is 
a scalar, or be understood in the Pareto sense, or in the sense of another 
partial order implied by a positive cone. Much research has been done on the 
specification of Pareto-optimal or efficient decisions and objectives for linear 
models, see e.g. Gal [9] or Steuer [43]. However, we must note that the standard 
form above uses the equality form of constraints Ax = b in order to define Xo. 
Other forms of linear constraints can be converted theoretically to equality form 
by introducing dummy variables as additional components of the vector x. In 
the practice of linear programming it is known, however, that the standard 
form is rather unfriendly to the modeler. Thus, specific formats of writing 
linear models have been proposed, such as MPS or LP-DIT format, see e.g. 
Makowski [27]. Without going into details of such formats, we shall note that 
they correspond to writing the set Xo in the form: 

(9.43) Xo = {x E R n : b:::; y = Ax + Wy:::; b + r E Rm, I:::; x:::; u}, 

where the vector x denotes rather actual decisions than dummy variables, 
thus x, m, n denote different entities than those implied by the standard text
book form. The model output y is composed of various intermediary vari
ables (hence it depends implicitly on itself, although usually through a lower
triangular matrix W). Essential for the modeler is her Ihis freedom to choose 
any of outputs Yj, including actually decisions x j, as an objective variable qi and 
to use many objectives - not only one, which is typical for algebraic modeling 
languages. 

Even more complicated formats of linear models are necessary if we allow 
for the repetition of some basic model blocks indexed by additional indices, as 
in the case of linear dynamic models: 

where Wt is called the dynamic state of the model (the initial condition Wi 

must be given), the index t has usually the interpretation of (discrete) time, 
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and x = (Xl, .. . XT) is a decision trajectory (called also control trajectory). 
Similarly, W = (WI, ... WT+1) is a state trajectory while Y = (Yl,' .. YT) is the 
output trajectory. Actually, the variable W should be considered a part of the 
vector Y (it is an intermediary variable, always accessible to the modeler) but is 
denoted separately because of its special importance - e.g. when differentiating 
the model, we must account for the state variables in a special way, see e.g. 
Wierzbicki [47]. Other similarly complicated forms of linear models result e.g. 
from stochastic optimization. 

A modeler who has developed or modified a complicated (say, dynamic) 
large scale linear model should first validate it by simple simulation - that is, 
assume some common sense decisions and check whether the outputs of the 
model make also sense to her/him. Because of multiplicity of constraints in 
large-scale models it might, however, happen that the common sense decisions 
are not admissible (in the model); thus, even simple simulation of large-scale 
linear models might be actually difficult. 

An important help for the modeler can be inverse simulation, in which 
she/he assumes some desired model outcomes y and checks - as in the classi
cal goal programming - whether there exist admissible decisions which result 
in these outcomes. Generalized inverse simulation consists in specifying also 
some reference decision x and in testing, whether this reference decision could 
result in the desired outcomes y. This can be written in the goal programming 
format of norm minimization, while it is useful to apply the augmented Cheby
shev norm (with changed sign, because we keep to the convention that that 
achievement functions are usually maximized while norms are minimized): 

n 

O"(y,y,x,x) = -(l-P)(l~~nlxi-Xil+C:Llxi-xil) 
- - i=l 

m 

P(l!P'~m IYj - ih I +c: L IYj - ih I). 
_J_ j=l 

(9.45) 

The coefficient P E [0; 1] indicates the weight given to achieving the desired 
output versus keeping close to reference decision. It is assumed for simplicity 
sake that all variables are already re-scaled to be dimension-free. 

A multi-objective optimization system based on reference point methodol
ogy can clearly help in such inverse simulation. In such a case, we stabilize 
all outcomes and decisions of interest and use for them partial achievement 
functions of the form O"i(Yi,iJi) (or even O"i(Yi, iJi, Yi))' similar to those defined 
in Section 9.3 in terms of objectives qi' An overall achievement function has 
then the form: 

O"(y,y,x,x) 

(9.46) 

n 

(1 - p)( m.in O"i(Xi, Xi) + c: ~ O"i(Xi, Xi) 
1<.<n L...J 

- - i=1 
m 

+ p( Ifi;in O"j (Yj, Yj) + c: L O"j(Yj, Yj))· 
1~J~m . 1 

J= 
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It is more convenient for the modeler, if such functions are defined inside the 
decision support system which also has a special function inverse simulation, 
prompting her Ihim to define which (if not all) decisions and model outputs 
should be stabilized and at which reference levels. 

Even more important for the modeler might be another interpretation of the 
above function, called simulation with elastic constraints or softly constrained 
simulation. Common sense decisions might appear inadmissible for the model, 
because it interprets all constraints as hard mathematical inequalities or equa
tions. On the other hand, we have already stressed that it is a good modeling 
practice to distinguish between hard constraints that can never be violated and 
soft constraints which in fact represent some desired relations and are better 
represented as additional objectives with given aspiration levels. Thus, in or
der to check actual admissibility of some common-sense decision :ie, the modeler 
should answer first the question which constraints in her Ihis model are actu
ally hard and which might be softened and included in the objective vector q. 
Thereafter, simulation with elastic constraints might be performed by maxi
mizing an overall achievement function similar as above. 

If (9.46) is maximized with concave piece-wise linear partial achievement 
functions Ui and for a linear model, then the underlying optimization problem 
can be converted to linear programming. In fact, if a partial achievement 
function - say, Ui(Xi, Xi) - is piece-wise linear but concave, then it can be 
expressed as the minimum of a number of linear functions: 

(9.47) 

where Uil(Xi, Xi) are linear functions. Assume that a similar expression is 
valid for Uj (qj , ijj). The maximization of the function (9.46) can be then equiv
alently expressed as the maximization of the following function of additional 
variables z, Zi, W, Wj: 

n m 

(9.48) (1- p)(z + € L Zi) + pew + € L Wj), 
i=l j=l 

with additional constraints: 

Uil(Xi, Xi) > Zi, Vl ELi, 

zi > z,Vi=l, ... n, 

Ujl(%,ijj) > Wj, VI E L j , 

(9.49) Wj > W, Vj = 1, ... m. 

Similar conversion principles apply if we have a mixed integer linear pro
gramming model - that can even express piece-wise linear models which are 
not concave (or not convex in the case offunction minimization). Thus, we can 
use inverse simulation or even softly constrained simulation for mixed integer 
programming models (although not all heuristic algorithms, related to some 

REFERENCE POINT APPROACHES 9-25 

It is more convenient for the modeler, if such functions are defined inside the 
decision support system which also has a special function inverse simulation, 
prompting her Ihim to define which (if not all) decisions and model outputs 
should be stabilized and at which reference levels. 

Even more important for the modeler might be another interpretation of the 
above function, called simulation with elastic constraints or softly constrained 
simulation. Common sense decisions might appear inadmissible for the model, 
because it interprets all constraints as hard mathematical inequalities or equa
tions. On the other hand, we have already stressed that it is a good modeling 
practice to distinguish between hard constraints that can never be violated and 
soft constraints which in fact represent some desired relations and are better 
represented as additional objectives with given aspiration levels. Thus, in or
der to check actual admissibility of some common-sense decision :ie, the modeler 
should answer first the question which constraints in her Ihis model are actu
ally hard and which might be softened and included in the objective vector q. 
Thereafter, simulation with elastic constraints might be performed by maxi
mizing an overall achievement function similar as above. 

If (9.46) is maximized with concave piece-wise linear partial achievement 
functions Ui and for a linear model, then the underlying optimization problem 
can be converted to linear programming. In fact, if a partial achievement 
function - say, Ui(Xi, Xi) - is piece-wise linear but concave, then it can be 
expressed as the minimum of a number of linear functions: 

(9.47) 

where Uil(Xi, Xi) are linear functions. Assume that a similar expression is 
valid for Uj (qj , ijj). The maximization of the function (9.46) can be then equiv
alently expressed as the maximization of the following function of additional 
variables z, Zi, W, Wj: 

n m 

(9.48) (1- p)(z + € L Zi) + pew + € L Wj), 
i=l j=l 

with additional constraints: 

Uil(Xi, Xi) > Zi, Vl ELi, 

zi > z,Vi=l, ... n, 

Ujl(%,ijj) > Wj, VI E L j , 

(9.49) Wj > W, Vj = 1, ... m. 

Similar conversion principles apply if we have a mixed integer linear pro
gramming model - that can even express piece-wise linear models which are 
not concave (or not convex in the case offunction minimization). Thus, we can 
use inverse simulation or even softly constrained simulation for mixed integer 
programming models (although not all heuristic algorithms, related to some 



9-26 REFERENCE POINT APPROACHES 

specific forms of objective functions in mixed integer optimization, would work 
for such optimization problems). 

Even less developed than user-friendly standards of defining linear models 
are such standards for nonlinear models. The classical textbook format for 
(multi-objective optimization of) such models is simple: 

(9.50) 

(9.51) 

"maximize"(q = f(x) E Rk), 
xEXo 

where h(x) models consecutive objective functions and 9j(X) models con
secutive constraints of the set of admissible decisions. However, such a format 
is seldom convenient for more complicated models, in which it is useful to con
sider various model outputs y and define both objectives and constraints in 
terms of such model outputs. 

While there exist some standards for specific nonlinear optimization systems 
- such as in MINOS, GAMS, AIMMS, AMPL, see e.g. Brooke et al. [3], Bisschop 
et al. [2], Fourer et al. [8] - they are devised more for single-objective optimiza
tion purposes than for practical multi-objective modeling and analysis, while 
experience in modeling shows that a model should be analyzed multi-objectively 
even if it is later used for single-objective optimization only. A useful standard 
was developed in the multi-objective nonlinear optimization system DIDAS-N8 

(see e.g. Krliglewski at al. [24]). Briefly, it consists in defining subsequent 
nonlinear model output relations: 

Yl h(x,z), 

= 
(9.52) Ym 

together with bounds for decision variables and outputs: 

(9.53) Xi,lo ~ Xi ~ Xi,up, i = 1, ... ,n; Yj,lo ~ Yj ~ Yj,up, j = 1, ... ,m 

(bounds for model parameters z are less essential). In this way, a directly 
computable (explicit, except for bounds) nonlinear model is defined. Implicit 
models can be defined by specifying Yj,lo = Yj,up for some j, which is then 

BDeveloped in the Institute of Control and Computation Engineering, Technical University 
of Warsaw, in cooperation with IIASA. Available as a public domain software from IIASA, 
see Appendix, in Poland from system authors. 

9-26 REFERENCE POINT APPROACHES 

specific forms of objective functions in mixed integer optimization, would work 
for such optimization problems). 

Even less developed than user-friendly standards of defining linear models 
are such standards for nonlinear models. The classical textbook format for 
(multi-objective optimization of) such models is simple: 

(9.50) 

(9.51) 

"maximize"(q = f(x) E Rk), 
xEXo 

where h(x) models consecutive objective functions and 9j(X) models con
secutive constraints of the set of admissible decisions. However, such a format 
is seldom convenient for more complicated models, in which it is useful to con
sider various model outputs y and define both objectives and constraints in 
terms of such model outputs. 

While there exist some standards for specific nonlinear optimization systems 
- such as in MINOS, GAMS, AIMMS, AMPL, see e.g. Brooke et al. [3], Bisschop 
et al. [2], Fourer et al. [8] - they are devised more for single-objective optimiza
tion purposes than for practical multi-objective modeling and analysis, while 
experience in modeling shows that a model should be analyzed multi-objectively 
even if it is later used for single-objective optimization only. A useful standard 
was developed in the multi-objective nonlinear optimization system DIDAS-N8 

(see e.g. Krliglewski at al. [24]). Briefly, it consists in defining subsequent 
nonlinear model output relations: 

Yl h(x,z), 

= 
(9.52) Ym 

together with bounds for decision variables and outputs: 

(9.53) Xi,lo ~ Xi ~ Xi,up, i = 1, ... ,n; Yj,lo ~ Yj ~ Yj,up, j = 1, ... ,m 

(bounds for model parameters z are less essential). In this way, a directly 
computable (explicit, except for bounds) nonlinear model is defined. Implicit 
models can be defined by specifying Yj,lo = Yj,up for some j, which is then 

BDeveloped in the Institute of Control and Computation Engineering, Technical University 
of Warsaw, in cooperation with IIASA. Available as a public domain software from IIASA, 
see Appendix, in Poland from system authors. 



REFERENCE POINT APPROACHES 9-27 

taken into account and resolved during optimization. Any variable Yj (and Xi, 

if needed) can be specified as maximized, minimized or stabilized objective. 
The model equations and bounds are specified using a computer spreadsheet 

format. The DIDAS-N system includes rather advanced automatic (algebraic) 
functions of model differentiation: it presents to the modeler all required partial 
and full derivatives and prepares an economical way of computing numerically 
the derivatives of the overall achievement function in a smooth form similar to 
Eq. (9.30). A specific robust optimization solver, based on a shifted penalty 
function approach, was developed and included in the system. 

However, DIDAS-N is a closed, nonmodular system written in PASCAL, dif
ficult for working with larger models, particularly when including large-scale 
linear model parts. Therefore, a new system called DIDAS-N++ was developed, 
see Granat et al. [12]. This system was written in C++ with a modular struc
ture, includes the possibility of selecting optimization solvers, and a choice and 
customization of a graphical user interface, together with a preferred option of 
specifying user preferences in terms of fuzzy membership functions controlled by 
aspiration and reservation levels (as discussed in a previous section; the mem
bership functions /.Li (qi , iii, qi) are displayed and modified graphically while the 
achievement functions (Ji(qi,iii' qi) are in fact used in computations). 

The format of the nonlinear model definition in DIDAS-N++ is similar to 
that of DIDAS-N. However, the nonlinear part can be also linked with a linear 
part, which is indicated by the general format: 

(9.54) 

where Yl, Y2, Xl, X2 denote the vectors of model outputs and decision vari
ables specific for the linear and nonlinear parts, while Xc is the vector of decision 
variables common for both parts. 

The model is first analyzed by an algebraic processing and compiling module 
to produce an executable file easily linked with other modules of the system -
the organizing module, a graphic interface, a selected solver - and containing 
all information how to compute model outputs and their derivatives (see e.g. 
Griewank [14]), together with the possibility of modifying values of decision 
variables, bounds and parameters. Thus the compiling process might be long 
for complicated models, but the repetitive runs of the compiled model needed 
in its simulation and optimization are relatively short. 

9.6 APPLICATIONS OF REFERENCE POINT METHODS 

The reasoning presented in previous sections might seem rather abstract. None
theless, all development of reference point methods was very much applications
oriented, starting with the original work of Kallio et al. [20] on forestry models, 
including many other applications to energy, land use and environmental mod
els at IIASA, applications of satisficing trade-off methods by Nakayama et al. 
[31] to engineering design, various applications of Pareto Race of Korhonen et 
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al. [22], and many others. Recent applications of a reference (aspiration
reservation) point method have been developed at IIASA using a modular 
tool MCMA (MultiCriteria Model Analysis)9 by Granat and Makowski [11], 
in relation to regional management of water quality (Makowski, Somly6dy and 
Watkins [28]), land use planning (Antoine, Fischer, Makowski [1]), urban land
use planning (Matsuhashi, [30]), and other examples [18]. 

Here we present only two short examples: one application to engineering 
design and another to ship navigation support. 

The first case concerns a classical problem in mechanical design - the design 
of a spur gear transmission unit, see e.g. Osyczka [33]. The mechanical outlay 
of this unit is shown in Fig. 9.3:. The design problem consists in choosing some 
mechanical dimensions (the width of the rim of toothed wheel, the diameters of 
the input and output shafts, the number of teeth of the pinion wheel, etc.) in 
order to obtain a best design. However, there is no single measure of the quality 
of design of such a gear transmission. Even when trying only to make the unit 
as compact as possible - which can be expressed by minimizing the volume 
of the unit while satisfying various constraints related to mechanical stresses 
and to an expected lifetime of efficient work of the gear unit - we should take 
into account other objectives, such as the distance between the axes or even 
the width of the rim of toothed wheel (which is, at the same time, a decision 
variable). 

The specification of a mathematical model that expresses the available knowl
edge on designing such gear units is obviously a question of expert opinion. Af
ter all, the modeler is a specialist in her Ihis specific field and knows best how 
to choose substantive models for a given problem; that is also the reason why 
we present here mostly methods for supporting the modeler in model analysis, 
not supplementing her Ihim in final decisions. Therefore, in the example of gear 
unit design, we follow a specialist who has selected a specific model in this case 
(Osyczka [33]) and comment only on the methodology of preparing the model 
for analysis and analyzing it. 

The equations of the corresponding model contain some tables of coefficients 
obtained by empirical, mechanical studies. While such original data are very 
valuable, an analytic approximation of them might be more useful for model 
analysis. Thus, these tables were approximated by exponential functions. The 
problem might be then specified in a classical textbook format such as (9.50, 
9.51) by defining three objective functions fi(X) and 14 constraints gj(x), some 
nonlinear and some expressing simple bounds. We present it here in a form 
similar to the textbook format (although the model was in fact rewritten in the 
DIDAS-N++ format, because this system was used for further analysis). 

1. The decision variables are: the width of the toothed wheel rim b (which 
is also an objective), the diameters d1 and d2 of the input and output shafts, 

9The MCMA tool is available from the URL: 111111. iiasa.ac .at/~marek/soft free of charge 
for research and educational purposes. 
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DIDAS-N++ format, because this system was used for further analysis). 

1. The decision variables are: the width of the toothed wheel rim b (which 
is also an objective), the diameters d1 and d2 of the input and output shafts, 

9The MCMA tool is available from the URL: 111111. iiasa.ac .at/~marek/soft free of charge 
for research and educational purposes. 



REFERENCE POINT APPROACHES 9-29 

Figure 9.3: A diagram of the spur gear unit 

the number of teeth of the pinion wheel Zl and the pitch of gear teeth m (the 
last two decision variables are in fact discrete). 

2. The objectives are the volume of the gear unit ql = II [mm3 ), the distance 
between the axes q2 = h [mm], the width of the toothed wheel rim q3 = h 
[mm): 

(9.55) 

ql = ((Jm2(zi+z~)b)+%di+%d~)*1O-5, 
(Zl + Z2) _ 

q2 = 2 m, 

q3 b. 

3. The constraints on the decisions concern various geometric relations and 
mechanical stresses. 

• gl expresses the bending stress of the pinion, 

(9.56) 

where: 

v = 1f * m * Zl * ii/60000, Kd = (14.5 + V)/14.5, 

Pmax = 102 * N * 9.81/V, Pog = Pmax * Kp * Kb * K d , 
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W1 = 4.7607 * exp( -0.104531 * (Z1 + 1.28627)) + 1.67421. 

• g2 expresses the bending stress of the gear, 

(9.57) 

where: 

W2 = 4.7607 * exp( -0.104531 * (Z2 + 1.28627)) + 1.67421. 

• g3 expresses the surface pressure of smaller wheel, 

(9.58) 

where: 

Y1 = 28.4869 * exp( -0.290085 * (Z1 - 1.78811)) + 3.31178. 

• g4 expresses the surface pressure of the greater wheel: 

(9.59) 

where: 

• g5, g6 express the torsional stresses of input and output shafts, 

where: 

Ms1 = 9549296 * N/n; W 01 = (7r * d~)/16, 
Ms2 Msd(zdz2); W02 = (7r * d~)/16. 

• g7, g8, g9 express the deviations of the velocity ratio and the relation 
between in and d1 : 

g7 = i - zd Z2 + ~i,; g8 = zd Z2 - i + ~i, ; 
(9.61) g9 = in * (Z1 - 2.4) - d1· 

• Other constraints are: 

glO = in * (Z2 - 2.4) - d2, g11 = b/in - binmin, g12 

(9.62) g13 = amax - (Z1 + Z2) /2 * in, g14 

4. In the above model, the following parameters were used: 

binmax - b/in, 

Z2 - zdi. 
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N = 12.0, ii = 280.0, i = 0.317, Lli = 0.01, Zl = 20, 

where N is the input power [kW], ii is the rotational input speed [rev Imin], 
i is the velocity ratio, Lli is the allowable deviation of velocity ratio, Zl is the 
number of teeth of the pinion. 

Geometric data are: 

bihmin = 5.0, bmmax = 10.0, amax = 293.8, 

where bihmin is the minimum blm coefficient (m = dpdzi, i = 1,2, is the 
pitch of the gear teeth, while dpi are the standard diameters of the gear wheels 
and b is the teeth width), bmmax is the maximum blm coefficient, amax is the 
maximum distance between the axes [mm]. 

Material data are: 

kgl = 105, kg2 = 105, kot = 62, ko2 = 62, ks = 70, 

where kgt is the allowable bending stress for the pinion [MPa], kg2 is the 
allowable bending stress for the gear [MPa], kot is the allowable surface pressure 
for the pinion [MPa], ko2 is the allowable surface pressure for the gear [MPa], 
ks is the allowable torsional stress of the shaft [MPa]. 

Other data are: 

Kb = 1.12, KzI = 1.87, Kz2 = 1.3, Kp = 1.25, 

where Kb is the coefficient of the concentrated load, Kzl is the coefficient of 
the equivalent load for the pinion, Kz2 is the coefficient of the equivalent load 
for the gear, K p is an overload factor. 

Calculated data are: 

T = 8000, Yc = 3.11, 

where T is the time of efficient work of the gear, Yc is a coefficient for the 
assumed pressure angle. 

The exponential approximations of empirical data tables are expressed by 
the functions WI, W2, Yl. We presented all these equations with a purpose: in 
order to stress that a computerized mathematical model might be very compli
cated. The model presented above is actually rather small - because it is static, 
not dynamic - as compared to other models used in applications. However, the 
model represents rather advanced knowledge in mechanical engineering and the 
selection of its various details relies on expert intuition: good modeling is an 
art. Moreover, even for such rather small model, the reader should imagine 
programming the model, supplying it with all necessary derivatives, selecting 
"by hand" such values of decision variables which would satisfy required con
straints, all done without specialized software supporting model analysis. 

When using such a specialized software, the modeler should use first a model 
generator, then model compiler; a good model compiler will automatically de
termine all needed derivatives. Even when such fast executable, compiled core 
model is available, the modeler might have trouble with simple model simu
lation. The form of the model is rather complicated (actually - not convex) 
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Figure 9.4: Interaction screen of DIDAS-N++ in the inverse simulation case, arbitrary 
aspiration levels 
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Figure 9.5: Interaction screen of DIDAS-N++ in the inverse simulation case, aspiration 
levels based on mechanical experience 

and without a good experience in mechanical design it is difficult to select such 
values of decision variables which are acceptable. 

This is illustrated in Fig. 9.4: which shows the results of an inverse simu
lation of the model with two model outcomes - objectives ql and q3 denoted 
respectively by fr and h - and two decision variables denoted by d1 and d2 , 

all stabilized 10. However, since the aspiration and reservation levels were ar
bitrarily selected, even the inverse simulation cannot give satisfactory results. 
The optimization of a corresponding achievement function indicates that such 
arbitrary reference levels cannot be realized in this model. The contours indi
cated in Fig. 9.4: represent the values of membership functions J.li(qi,iliJt;) and 
the circles on these contours indicate the attained levels of objectives. Values 0 
of these membership functions at circled points indicate that the requirements 
of the modeler cannot be satisfied. 

10 In Fig. 9.4: - Fig. 9.6: we use actual interaction screens of ISAAP-ToOL in DIDAS-N++. 
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Figure 9.6: Interaction screen of DIDAS-N++ in the softly constrained simulation case, 
improvements of both objectives 

In order to find results that are admissible for the model, other aspiration 
levels must be selected using the experience of a designer, see Fig. 9.5: where 
the aspirations were set according to data given by Osyczka [33]. Since the 
model was actually changed - by using the exponential approximation of data 
tables - from the one described by Osyczka, the results of the inverse simula
tion with membership values close to 1 indicate a positive validity test of the 
model. However, the inverse simulation results are not efficient in the sense of 
minimization of objectives (the results given by Osyczka might be efficient for 
his model, but the model was changed by including approximating functions). 

Improvement of both (or even all three) objectives considered can be ob
tained by switching to softly constrained simulation, as shown in Fig. 9.6:, 
where the soft constraints on decision variables were relaxed in such a way as 
to obtain efficient results for the problem of minimizing both selected objectives. 
In Fig. 9.6:, the improvement of objective values is shown by line segments lead
ing to circles that indicate the attained values. A serious model analysis would 
clearly not stop at the results of such an experiment - many other experiments, 
including post-optimal parametric analysis, might be necessary. However, the 
above example is presented only as an illustration of some basic functions of a 
system of computerized tools for multi-objective model analysis and decision 
support. 

Another application example shows the usefulness of including dynamic for
mats of models. This case concerns ship navigation support (see Smierzchalski 
et al. [41]): the problem is to control the course of a ship in such a way as to 
maximize the minimal distance from possible collision objects while minimizing 
the deviations from the initial course of the ship, see Fig. 9.7:. 

This is a dynamic problem, with the equations of the model described ini
tially by a set of differential equations for t E [0; T]: 

Vl sinx(t), 

Vl cosx(t), 
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Ship Bj 
(Wlj, W2j) 

Figure 9.7: A diagram of ship collision control situation (CPA - safe zone for ship A) 

(9.63) 

Wlj(t) 
W2j(t) 

vjsin'ljJj, j = 2, ... n, 
Vj cos'ljJj, j = 2, ... n, 

where x(t) is the course of "our" ship, 'ljJj - courses of other ships, with 
initial values of ship positions given as the vector w(O); between other model 
outcomes, the objectives can be modeled as: 

min . min J(WI (t) - Wlj(t))2 + (W2(t) - W2j(t))2), 
tE[O;T] J=2, ... n 

(9.64) q2 loT (x(t) - 'ljJl)2dt, 

where ql represents the (squared) minimal distance which should be max
imized and q2 represents the (squared) average deviation from initial course, 
which should be minimized. 

To be used in a DIDAS-N system, this model was simply discretized in time. 
We do not describe the analysis of this model in more detail here (the results 
of such analysis are given e.g. in Smierzchalski et al. [41)); this example was 
quoted only to show the practical sense of using dynamic models with multi
objective analysis and optimization. 

9.7 A DECISION PROCESS IN REFERENCE POINT METHODS 

We turn now back to a broader discussion and interpretation of the underly
ing methodological assumptions, theoretical results and the decision process 
considered in the reference point methodology. 
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We assume in this methodology that the decision maker - for example, a 
scientist analyzing environmental models, an analyst or an engineering designer 
- develops, modifies and uses substantive models which are specific for her/his 
profession and express essential aspects of the decision situation as perceived 
by her/him. In the decision process, the decision maker might have to specify 
at least partly her/his preferences and thus to define a preferential model. 
However, we assume that the decision maker preserves the right to change 
these preferences and thus the form of the preferential model is rather general, 
for example, restricted to specifying only which decision outcomes should be 
maximized or minimized. 

Such a decision process might be subdivided into various phases. We might 
either include into it the early phases concerned with problem recognition and 
model building, or consider them as lying outside of the decision process. We 
include them for the sake of completeness and consider the following phases: 

1. Problem recognition and formulation, data gathering and substantive 
model selection. 

2. Formulation of a substantive model; initial analysis, including model 
validation. 

3. Selection of a partial preferential model, detailed analysis of the substan
tive model, generation of scenarios or design options. 

4. Final selection of a scenario or a design, implementation, feedback from 
practice. 

Phase 1, though extremely important, is not supported by reference point 
methodology. Many known methods of decision analysis and support can be 
applied for phase 4; however, they require more detailed specification of prefer
ential models. The reference point methodology concentrates on methods and 
techniques that might be used to support phases 2 and 3. 

While it is well known that vector optimization provides various techniques 
for supporting phase 3, we stress that such techniques, in particular the ref
erence point methodology, can be usefully extended to support also phase 2 
- often very important and time-consuming for the modeler. The application 
of such techniques in phase 2 might be called multi-objective model analysis, 
which is understood here mainly as a tool of learning by the modeler of various 
possibilities and outcomes predicted by her/his models. 

Such learning should enhance the intuitive capabilities of an analyst or deci
sion maker as an expert in the field of his specialization. If we aim to support 
such learning by optimization and decision-analytical tools in the early stages 
of such a decision process, we cannot concentrate on modeling explicit prefer
ence or utility representation. We cannot even require that the decision maker 
should be consistent: the inconsistency of the decision maker is valuable in 
learning. We must rather concentrate on supporting various experiments per
formed with the help of the substantive model. During all such experiments, 
the final choice of decisions is not explicitly supported but even actually post
poned. In fact, we suggest the use of "hard" optimization tools to support 
"soft" learning, deliberation and intuition formation. 
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"soft" learning, deliberation and intuition formation. 
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This "hard" optimization concerns an achievement function - a proxy utility 
or value function of the computerized DSS l1 working in a quasi-satisficing man
ner - which, as already stressed, cannot be described just by a distance from 
the reference point. Reference point methods are a generalization of goal pro
gramming approach to such cases when we can and want to improve (minimize 
or maximize) certain outcomes beyond their reference points. 

The main assumption of this approach is the use of multiple criteria op
timization as a tool supporting not necessarily actual decision selection, but 
much rather facilitating learning about various possible outcomes of decisions 
as predicted by relevant models or helping in generating scenarios for possible 
development patterns in response to the accumulated expertise of the analyst. 
This approach is thus devised for a specific type of decision process which typi
cally arises when using environmental or economic models for generating future 
development scenarios12 or when using engineering models for computer-aided 
design. 

The main conclusion of the reference point methodology is that, if we want 
to learn, we must postpone choice; if we postpone choice long enough, it might 
become self-evident. In this sense, optimization in the reference point method
ology is used not necessarily in a sense of the goal of choice, but rather in the 
sense of a tool of learning. That does not mean that the decisions obtained 
by applying reference point methodology are arbitrary; if the decision maker 
learned enough, her/his value function has stabilized and she/he would like 
to have a support in the final stage of actual decision choice, such a support 
can be also provided by the reference point methodology, including interactive 
procedures of choosing best decisions with proven convergence (see Wierzbicki 
[52]). 
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Abstract: In this chapter we discuss some of the principles underlying what 
are often called ''interactive'' methods of MCDM (or ''progressive articulation 
of preferences" in MCDM). These are methods in which the full preference 
structure of the decision maker is not structured and elicited a priori, but is 
evaluated progressively and locally in response to simple choices made by the 
decision maker. We differentiate methods in which the responses of the decision 
maker are expressed in terms of tradeoffs (directly, or indirectly by choices 
between pairs of outcomes), or in terms of aspiration levels (i.e. desired levels 
of performance for each criterion). In the final section, we report briefly on 
simulation studies which have been undertaken in order to assess convergence 
properties of the interactive methods. 
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10-2 CONCEPTS OF INTERACTIVE PROGRAMMING 

10.1 WHAT IS INTERACTIVE? 

At first sight, it may appear strange to find a specific chapter devoted to "in
teractive" methods of MCDM, as in a very real sense all MCDM must involve 
interaction with the decision maker. Even the technical mathematical pro
gramming aspects of (for example) identifying all efficient solutions, needs to 
be preceeded by interaction with the decision maker (DM) to identify and to 
structure the criteria. Any form of preference modeling which may follow will 
involve a considerable degree of interaction with the decision maker. 

Nevertheless, a number of MCDM approaches have come to be termed "in
teractive methods" (or sometimes "progressive articulation of preferences"), 
in that they involve the following characteristic steps (cf. also Gardiner and 
Steuer [4]): 

(I) A feasible (and usually efficient) solution, or small number of solutions, 
is generated according to some specified procedure and presented to the 
decision maker. 

(2) If the decision maker is satisfied with the solution (or one of these) gen
erated, then the process stops. Otherwise, he/she is requested to pro
vide some local preference information in the vicinity of the solution{s) 
presented, such as direct comparisons between (actual or hypothetical) 
solutions, tradeoffs, or desired directions of improvement. 

(3) In the light of the local information provided, preference models are up
dated and/or parts of the decision space are eliminated, and the process 
returns to the first step. 

There are certain advantages and disadvantages associated with the use of 
interactive methods for MCDM in this sense, and these have an influence on the 
types of MCDM problems for which they are or are not suited. The primary 
advantage of the interactive approach is that the value judgements which 
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ating a shortlist of alternatives for more detailed evaluation later. The 
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tive approach can assist the decision maker in learning quickly about the 
options and tradeoffs which are available. 
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• Interactive methods are not well suited to use in group decision making 
contexts in which there are substantial conflicts, in which many crite
ria are qualitative, or in which a clearly defensible justification for the 
solution obtained needs to be established (as is often the case in strate
gic public sector policy decisions). Of course, individual members of the 
group may well find that the interactive methods are useful in exploring 
the options for themselves prior to the group sessions. 

Both observations above do clearly indicate that the most important benefit 
may not be in the generation of an optimal solution per se, but rather in the 
insights and understanding generated for the decision maker in exploring the 
decision space in a systematic and coherent manner. 

Shin and Ravindran [25] provide a comprehensive review (including 116 ref
erences) of interactive methods published up to about 1990, by which time the 
basic approaches can be said to have been established. They also provide a 
classification of interactive methods into 10 categories, differentiated primarily 
in terms of: 

• Style of interaction with the decision maker, which may be in the form of 
classifying criteria as satisfactory or otherwise, tradeoffs (which may be 
global or local, precise or imprecise), direct comparisons of solutions, or 
aspiration levels; and 

• Solution approach, which they see as differentiated between "point assess
ment" , in which a sequence of specific solutions is evaluated, and "interval 
reduction" , in which the decision space is systematically pruned. 

Gardiner and Steuer [4, 5] also review a number of the most prominent 
interactive procedures, most of which we shall refer to below. Their intention 
was to identify many of the common themes running through the different 
methodologies, and to use these to suggest "unified" procedures, linking various 
approaches and allowing users to switch between methodologies. This is an 
interesting concept worthy of further empirical research. One of the important 
research questions would have to concern the optimal balance between offering 
different means of exploring the decision space and the potential for confusing 
the user through too many different types of information. 

The purpose of the present chapter is not to repeat the still quite current 
reviews of Shin and Ravindran, and of Gardiner and Steuer. The intention 
is rather to present an overview of the broad streams of thought and their 
rationale, and to extract general principles for the implementation of interac
tive methods. As indicated in the above-mentioned review papers, there are a 
number of different means of classifying interactive methods. For this paper, 
we have chosen to differentiate approaches primarily according to whether the 
preferences of the decision maker are modeled in terms of value functions or 
of aspiration levels. In the case of value function models, we differentiate fur
ther according to whether information from the decision maker is primarily in 
the form of tradeoffs or comparisons of alternatives. We have elsewhere (e.g. 
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Stewart [35]) argued that the use of value functions and of aspiration levels char
acterize two of the three fundamentally different approaches to (or "schools" 
of) MCDM. The third approach is that of outranking, but these methods are 
not generally expressed in the interactive framework defined above, and will 
thus not be dealt with further in this chapter (but see Vetschera [40] for at 
least one interactive outranking approach). 

Let us now establish the notation to be used in this chapter. Let A represent 
the set of alternatives from which either a single element or a shortlist needs 
to be selected. Each action a E A is associated with an m-dimensional vector 
of attributes za = (zf, z~, ... , z~) (i.e. levels of achievement for each of m 
criteria). Unsuperscripted symbols z and Zi will be used to represent arbitrary 
attribute values, not necessarily associated with any specific alternative. Let 
Z = {z E ]Rmlz = za for some a E A}, i.e. the set of attainable attribute 
vectors. Without loss of generality, we shall suppose that the attributes are 
defined in such a manner that increasing values are preferred. We suppose also 
that preferences between alternatives can be stated (by the decision maker) in 
terms of preferences between attribute vectors, and will use the notation za >
zb to represent preference for alternative a over b, and za t zb to represent 
preference or indifference, i.e. a is at least as good as b. 

The set A is typically assumed either to be finite, consisting of N discrete 
choices, or to be a subset of ]Rn, so that each element of A can be represented 
by a decision vector (i.e. vector of decision variables) x E ]Rn. In the latter case, 
we shall for ease of notation often refer directly to "x E A", where A c ]Rn 

is now viewed as the set of decision vectors corresponding to the feasible set 
of alternatives. The attribute values can then be represented by real-valued 
criterion functions Zi = fi(X), or in vector form by z = f(x). 

10.2 VALUE FUNCTION METHODS WITH TRADEOFF 
INFORMATION 

Many interactive methods start with the assumption of the existence of some 
form of value function, V (z), which can represent preferences of the decision 
maker in the sense that V(za) > V(zb) if and only if za >- zb. No attempt is 
made to fully specify or estimate this value function, however, and generally 
relatively mild assumptions concerning the form of V (z) are made, such as that 
of pseudo concavity. Stronger assumptions such as additivity (implying the need 
for preferential independence of criteria) are often not required, so that inter
active value-based methods are potentially usable in a "do-it-yourself" mode 
(i.e. not necessarily under the direct guidance of a skilled MCDM facilitator), 
without the need for careful tests for assumptions such as preferential indepen
dence. Furthermore, even the assumptions which are made are only applied in a 
local sense, i.e. to provide sufficient guidance to the DM concerning potentially 
better regions of the decision space which need to be explored. The underlying 
philosophy is that preferences tend to evolve and to develop as greater under
standing of the problem is attained, with the result that the value function 
itself may change during the process. 
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Perhaps the earliest interactive procedure of this type is that described by 
Geoffrion, Dyer and Feinberg [6] for the case in which A is a compact, convex 
subset of Rn. Their approach was based on maximizing V(J(x» subject to 
x E A using the Franke-Wolfe algorithm, but using the decision maker, in 
effect, as a function and gradient evaluator. Each iteration of the process 
starts with a feasible point, say Xl E A, and involves in principle the following 
steps: 

(I) Determine \1V(J(xl», i.e. the gradient vector ofV(J(x}} at x = Xl; 

(2) Obtain a direction of improvement d = y - Xl, where y is the solution 
to: 

MaximizeYEA \1V(J(xl». y. 

(3) Solve the one-dimensional search problem: 

Maximizeo:-::;t9 V(J(x l + td» 

and set x 2 = Xl + td as the starting point for the next iteration. 

The problem is that the value function is assumed not to be known explicitly, 
so that neither the gradient (in the first step) nor the linear search (in the 
third step) can be evaluated explicitly. Note, however, that we can express the 
gradient in the form: 

(10.1 ) 

Geoffrion et al. pointed out that the linearized optimization problem in the 
second step is unaffected if all elements of \1V (J (Xl» are divided through by 
a common positive term. Thus dividing through by 8V(z)/8z1 evaluated at 
z = f(x l

) (where choice of the attribute to be the reference Zl is arbitrary), 
this optimization can be expressed in the form: 

(10.2) 
m 

MaximizeYEA L Wi \1 fi (xl) . Y 
i=l 

where the weight Wi is simply the tradeoff between attributes 1 and i, i.e. the 
amount of attribute 1 (the reference) which the decision maker is prepared to 
sacrifice, in order to obtain a unit gain in attribute i, defined by: 

8V(z}/8Zi 

Wi = 8V(z}/8z1 

evaluated at z = f(x l ). The required tradeoffs need to be provided by the 
decision maker. These may be assessed either directly (by comparing each at
tribute to a pre-selected reference attribute), or indirectly by means of a number 
of more natural "enquiries" as suggested by Rosinger [23]. Once the tradeoffs 
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have been established, the first two steps of the algorithm can immediately be 
implemented. The absence of an explicit value function is less of a problem for 
the final step, as the DM can be presented with a sequence of alternatives along 
the linear search direction (for example by using a Fibonacci search or secant 
methods), from which an approximate optimal position can be ascertained by 
direct evaluation. 

The optimization steps are based on relatively imprecise information, and 
only a relatively small number of iterations can be executed in practice. Geof
frion et al. provide some practical evidence, nevertheless, that good solutions 
can be obtained. One difficulty in principle with the approach is, however, 
the fact that preference information from one iteration is discarded before the 
next iteration. This is very inefficient use of information, the assessment of 
which is both a difficult task for the DM and imprecise. While local tradeoffs 
may be expected to change as the DM moves through the decision space, it is 
also true that in most cases the changes would be gradual. With this in mind, 
Sakawa [241 suggested the use of "proxy functions" as local estimates to value 
function. He proposed a few families of functions (sums of exponential, power 
or log functions), from which an appropriate form could be selected. The pa
rameters of the chosen family of functions could be estimated from the more 
recent tradeoffs provided by the DM, thus generating continually updated ver
sions of the approximations. The proxy functions could be optimized directly 
instead of using the Frank-Wolfe algorithm, providing promise of much more 
rapid convergence to the DM's most preferred solution. 

More effective use can be made of the tradeoff information if the assumption 
is made that the value function is pseudoconcave, which means that if for any 
two attribute vectors, say ZU and zb, we have that: 

(10.3) 

then V(ZU) ~ V(zb), i.e. zb 'if zU. As in the Geoffrion-Dyer-Feinberg approach, 
we can divide through by 8V(z)/8zds=sa, so that the condition for concluding 
that ZU t zb is equivalent to: 

m 

(10.4) LWi(Z~ - zf):::; 0 
i=l 

where the Wi are the tradeoffs assessed at the solution represented by the at
tribute vector ZU. Note that this result applies equally well whether A is 
discrete or continuous. 

The above property of pseudoconcave value functions can be used to enhance 
the Geoffrion-Dyer-Feinberg algorithm, by a process of generating "tradeoff 
cuts" (Musselman and Talavage [19]) to reduce the decision space following 
each iteration. Suppose that tradeoffs as defined above are assessed at the point 
Xl, at which the attribute values are given by j(x l ). By the assumed pseudo
concavity property, an alternative solution x, say, can only be preferred to Xl 

if 2::7:1 Wi(Ji(X) - h(xl» ~ 0, where once again the weights are the tradeoffs 
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assessed by the decision maker at the point xl. If we define AD = A, and if at 
iteration k, tradeoff weights wf are assessed at the point Xk, then the search 
for xk+1 can be restricted to Ak = A k- 1 n{x E ]Rnl 2::':1 wf{Ji(x) -Ji(xk)) ~ 
O}. The search for the direction of improvement for the next iteration of the 
Geoffrion-Dyer-Feinberg approach is thus refined by limiting the optimization 
step in (10.2) to y E Ak. 

In introducing tradeoff cuts, however, Musselman and Talavage [19] replaced 
the optimization steps of the Geoffrion-Dyer-Feinberg algorithm by a search for 
the most central point of Ak. The rationale behind this is that at each itera
tion of the algorithm it may be more advantageous for the decision maker to 
examine a solution which will lead to a large reduction in the decision space 
(through the next tradeoff cut), than to seek an immediately maximum rate of 
value improvement. This is an important insight, which has also been used in 
other interactive approaches, e.g. by Zionts and Wallenius [43] who introduced 
the term "middlemosf' to denote such estimates. These basic themes are re
fined by Loganathan and Sherali [14], who argue for applying the middlemost 
concept to constraints generated by the tradeoff cuts, but not to the constraints 
defining the initial feasible region A, so as to ensure that at each iteration the 
decision maker only needs to evaluate efficient solutions. They suggested that 
by obtaining the decision maker's tradeoffs at efficient solutions only, more 
meaningful marginal rates of substitution can be achieved. Numerical studies 
on the above tradeoff cut approaches, and some variations on them, have been 
reported by Shin and Ravindran [26]. 

10.3 VALUE FUNCTION METHODS USING DIRECT COMPARISONS 

Instead of requiring the decision maker to provide tradeoffs between criteria, 
preference information can also be obtained from direct comparisons by the 
decision maker of two or more decision alternatives (represented in terms of 
their attribute vectors z). Such information can be used either directly to draw 
inferences concerning the form of the underlying value function, or indirectly 
to eliminate parts of the decision space (as with the tradeoff cuts above). 

Let z* be the attribute vector which maximizes V(z) over z E Z. We 
continue to make the assumption that the value function is pseudoconcave, 
but now assume that the set Z is convex. Note that convexity of Z need not 
necessarily be implied by the convexity of A, although in the case of multiple 
objective linear programming, for which most of the methods described in this 
section were originally developed, both A and Z are convex. Under these 
assumptions, it follows that there exist non-negative weights A1, A2, ... , Am 
such that z* maximizes 2::':1 AiZi over Z. This simple observation has been 
used as the basis for a number of interactive procedures, in which preference 
information obtained from the decision maker is used to increasingly restrict 
the set of allowable weight vectors, which implicitly then also restricts the range 
of solutions to be considered. As indicated above, these methods have generally 
been framed in the context of multiple objective linear programming, which has 
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the advantage of providing a natural point of termination of the process when 
all retained weight vectors generate the same optimal basis. 

One such scheme is that introduced by Zionts and Wallenius [42] and later 
refined by them in [43]. The basic concepts underlying their approach (ignoring 
for the moment some of the refinements needed to ensure convergence) can be 
summarized in the following steps: 

(1) Let A = {A E ]Rm IAi ~ 0; 2::1 Ai = I}. Select a A E A and maximize 
2::1 Aizi for z E Z. Let z* be the resultant attribute vector. 

(2) Search for a A-efficient solution, say Z1, distinct from that represented by 
z*, such that the decision maker prefers Z1 to z* (where z is A-efficient 
if it maximizes 2::1 AiZi over z E Z for some A E A). In the case of 
multiple objective linear programming, the search is typically restricted 
to basic solutions adjacent to that represented by z*. If no such solution 
is found, then STOP. 

(3) Restrict the set A to those weight vectors satisfying 2::1[z; - ziJAi > o. 
If A is now empty, then start deleting the oldest constraints of this form 
until A is no longer empty. 

(4) Select a A E A and maximize 2::1 Aizi for z E Z. (Zionts and Wallenius 
suggest using the "middlemost" solution, viz. that which maximizes the 
minimum slack over all constraints.) Let ZO be the resultant attribute 
vector. 

(5) Set z* = ZO if ZO is preferred by the decision maker to Z1, or z* = Z1 

otherwise. Include an additional constraint as in step 3 consistent with 
the preference stated between ZO and Z1, and return to step 2. 

The above steps are intuitively appealing, and will in fact lead to the maximum 
value solution if the value function is linear and the decision maker expresses 
preferences consistent with this linear value function at all times. In practice, 
however, tradeoffs will vary across the decision space, with the result that the 
inequalities in the Ai generated from local preferences at one point in the deci
sion space might not apply at the true optimum point, leading to termination 
at a sub-optimal solution. With this and other practicalities in mind, Zionts 
and Wallenius [43] introduced the following refinements: 

• If no distinctly different adjacent basic solutions are found in step 2, then 
search for tradeoffs corresponding to A-efficient edges emanating from z* 
which the decision mal<er considers desirable. If such a preferred tradeoff 
is found, then a similar constraint can be added to that of step 3, and 
the procedure continues. 

• If step 2 yields neither a preferred adjacent solution nor a preferred trade
off, then the search is extended to edges and adjacent solutions which are 
efficient but not A-efficient. 
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• If only preferred tradeoffs are identified, then there will be no Z1 solution. 
In this case, the comparison in the last step is made between ZO and z*; 

if z* ~ zO, then the procedure terminates. The solution is, however, 
only locally optimal (the optimal vertex), but more preferred non-basic 
solutions exist. Strictly speaking, adjacent facets of the LP should be 
investigated to find a truly globally optimal solution, but it is not clear 
that this will give any great advantage in MOLPs of realistic size. 

Since the refined procedure either moves to an improved solution at each step, 
or terminates with a basic solution which is locally optimal amongst adjacent 
basic solutions, the result must be the extreme point of the simplex which has 
the largest value of V (z). 

A more direct, but rather heuristic approach to the same problem of finding 
the "correct" weight vector A has been suggested by Steuer and co-workers (see 
for example Steuer [29J, Chapters 13 and 14). Steuer proposes a number of 
variations to the basic idea, perhaps the easiest of which to describe being that 
which he terms the "interactive weighted-sums/filtering approach" (Steuer [29J, 
Section 13.5). The set of feasible weight vectors at any step of the procedure 
is defined in the form A = {A E ~m Iii::::; Ai ::::; Jli; L~1 Ai = I}. Initially the 
bounds are ii = 0 and Jli = 1, but the interval is systematically shrunk at each 
iteration. In outline, the procedure can be described in terms of the following 
steps: 

(1) Initialize ii = 0 and Jli = 1 for all criteria i; let W = 1 be the width of 
the interval for each i. 

(2) Randomly generate a specified number of vectors from A, and then fil
ter these to obtain a smaller number of widely dispersed vectors. For 
each vector generated, find the corresponding attribute vector maximiz
ing L~l A;Zi for z E Z. Filter these solutions again to generate a speci
fied number of attribute vectors which are as widely dispersed as possible. 
Let these be Z1, Z2, ... ,zP say. 

(3) Let the decision maker select the most preferred of Z1, Z2, ... , zp. Denote 
by ZO the vector which is chosen, and let A 0 be the weight vector for which 
ZO is optimal. 

(4) Replace W by r W, where r is a chosen reduction factor. Select new values 
for ii and Jli such that Jli - ii = W, and such that A? is positioned as 
close as possible to the centre of the interval while ensuring that ii ;::: 0 
and Jli ::::; 1. 

(5) Return to step 2. 

The basic philosophy, of course, is that the correct weights for generating the 
optimal solution should be in the vicinity of the weights generating the most 
preferred of a sample set of solutions, than in the vicinity of weights generating 
the less preferred solutions. The approach is essentially heuristic, as no guar
antee of convergence to the optimal solution can be given, but has a degree of 
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plausibility, is easy to explain to users, encourages systematic exploration of 
the decision space, and is generally quick and easy to apply. 

Steuer and Choo [30] applied the same general idea to the context in which 
solutions are generated not by maximizing a linear approximation to the value 
function, but by minimizing the distance from the ideal solution according to 
an augmented weighted Tchebycheff norm. Thus, if z;* = max.,Ez{zi}, then 
the solution corresponding to a weight vector A is obtained by minimizing 
D - f. L~1 Zi for some small f. > 0, subject to: 

D ~ )..i(Z;* - Zi) for i = 1,2, ... , m. 

This is perhaps closer to concept of aspiration level methods (cf. Section 10.5), 
and indeed Steuer et a1. [31] have extended the idea to combine the augmented 
Tchebycheff approach with the reference point approach of Wierzbicki. It is 
worth noting that the weighted Tchebycheff and related procedures are directly 
applicable to non-linear and even discrete problems. 

Another approach for multiple objective linear programming which shares 
some of the features of the above methods is "SIMOLP" (Simplified Interactive 
Multiple Objective Linear Programming) introduced by Reeves and Franz [22]. 
SIMOLP also makes use of linear weighted sums of attribute values to generate 
solutions, with adjustment of weights in the light of selections made by the 
decision maker, although the authors stress that the weights should not be 
viewed as approximating a value function, but simply as a device for generating 
new solutions. The method can be described in terms of the following steps: 

(1) Maximize each objective in turn, to generate m solutions, say Z1, ... , zm. 

(2) Identify the m-dimensional hyperplane, described by L~1 )..iZi = c, 
which passes through all m points. In order to ensure that the solu
tion to be obtained in the next step is efficient, set any negative )..i-values 
to zero. 

(3) Maximize L~1 AiZi subject to Z E Z, in order to generate a solution 
which is a compromise between the previous m solutions, and let the 
solution be z*. 

(4) If z* is distinct from all of Z1, Z2, ... , zm, and is preferred to at least one 
of them, then replace the least preferred of the m solutions by z*, and 
return to step 2. Otherwise the procedure terminates. 

The procedures of Zionts and Wallenius and of Steuer and co-workers de
scribed above systematically reduce the decision space indirectly by means of 
restrictions placed on the range of value functions. Comparisons between alter
natives can also be used to place direct constraints on the decision space itself. 
This is particularly useful in the case of discrete alternatives where linear value 
functions can exclude efficient solutions (which are "convex dominated", i.e. 
domina.ted by a hypothetical alterna.tive formed by the convex combination 
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of the attribute values of two other alternatives). The basic idea is relatively 
simple. For any pair of attribute vectors za and Zb such that za »- zb we define: 

(10.5) 

This set is commonly referred to as a "convex cone", although it is strictly 
speaking the differences z - zb which constitute the cone. If the underlying 
value function is quasi-concave (a slightly weaker assumption than that of pseu
doconcavity), then it follows directly from the definition of quasi-concavity that 
zb »- z for any z which either belongs to, or is dominated by an element of, 
G[za »- zb]. The corresponding alternative can in consequence be eliminated 
from further consideration. 

A single preference statement as above does not usually provide much of a 
reduction in the decision space. The approach becomes much more powerful 
if the least preferred of a set of more than two alternatives can be provided. 
Thus suppose that zq has been identified as the least preferred of q attribute 
vectors Zl, z2, ... , zq. We then define: 

(10.6) 
q-1 

G[z\ z2, ... , zq-1 »- zq] = {z E Z Iz = zq + Lf-lk(zq - zk) for some f-li > O} 
k=l 

which is also referred to as a q-point convex cone (with the same caveat as 
above). The assumption of a quasi-concave value function then implies again 
that zq »- z for any z either belonging to or dominated by an element of 
G[zl, z2, ... ,zq-1 »- zq], so that the corresponding alternative can be elim
inated. It is simple to test whether any particular attribute vector z is in 
or dominated by G[Zl, Z2, ... ,zq-l »- zq] by solving the linear programming 
problem: 

Maximize E 

subject to 

q-l 

L f-lk (z; - z;) - E 2: Zi - z; for i = 1, 2, ... , m. 
k=l 

If the optimum value for this LP is non-negative then z can be eliminated. 
The use of convex cones in the above manner was introduced by Korhonen 

et al. [13] as a method for extending the Zionts-Wallenius approach to discrete 
choice problems in MCDM. Although the approach was developed initially for 
the discrete problem, Ramesh et al. [21] have pointed out that it is a useful 
addition to the Zionts-Wallenius algorithm for the multiple objective linear 
programming as well. The advantage in the linear programming case is that 
even if earlier constraints on the weights A need to be deleted, it is still valid to 
retain the convex cones derived from the same comparisons, so that the earlier 
preference information is not completely lost. 
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While the convex cone approach is potentially useful particularly for the 
case of a discrete set of alternatives, its value is limited if attention is restricted 
entirely to actual alternatives in A. The problem is that if zq is substan
tially less preferred than any of Z1, Z2, ... , zq-1, then the preference statement 
may be relatively uninformative, and may not reduce the decision space to any 
great degree. In recognition of this problem, Koksalan et al. [8]' Koksalan and 
Sagala [9], and Koksalan and Taner [10] have suggested the use of "dummy 
alternatives" to generate the cones. In essence, convex combinations of actual 
attribute vectors are generated in such a way that all are only slightly preferred 
to the vector zq. It is shown that cones generated in this way are much more 
informative and eliminate larger portions of the decision space. The cited refer
ences suggest a number of practical means by which useful dummy alternatives 
may be generated. 

The links between the convex cones and the Zionts-Wallen ius procedures 
have been extended by Prasad et al. [20], who introduce the concept of "p-cone 
efficiency". For any specific attribute vector z, we minimize p subject to: 

q-1 

LJ.lk(zi-zf) - PZi 2: Zi-Zr fori=1,2, ... ,m. 
k=1 

This is an alternative test for cone dominance of z in the sense that if the 
solution is zero then z is cone-dominated. If the optimizing value of p is greater 
than zero, then zq+ Lk:i J.ldzq-zk) 2: (l-p)z, i.e. (l-p)z is cone dominated. 
The magnitude of p thus gives a measure of how nearly cone dominated the 
vector z is. Prasad et al. suggest using this idea in two ways. Firstly, the 
alternative giving the maximum value for p is selected for comparison with 
the current best solution, and generation of a new cone, as this appears to 
give a maximum rate of improvement in the interactive process. Secondly, the 
procedure can be terminated with little loss if all remaining alternatives have 
values for p less than a given threshold, i.e. are nearly cone dominated. 

Malakooti [17] suggests another approach to selecting an alternative to be 
compared with the current best solution, also with the idea of providing maxi
mum information and progress with each comparison. His proposal is to choose 
the next alternative to be compared as that which maximizes the number of 
alternatives in A which would be eliminated if the current best solution turns 
out to be preferred to it. It is claimed that this gives a high likelihood of im
provement at each stage, while even if there is no immediate improvement the 
feasible space is maximally reduced. Malakooti also allows the use of gradient, 
i.e. tradeoff information, in which case the cones are equivalent to the tradeoff 
cuts which we have discus..<;ed earlier. 

10.4 A GENERALIZED INTERACTIVE VALUE FUNCTION 
APPROACH 

The methods discussed in the previous two sections all assume the existence of 
a value function with certain properties, typically pseudoconcavity. Preferences 
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expressed by the decision maker are translated either into explicit restrictions 
on the family of value functions best describing the decision maker's preferences, 
or into restrictions on the set of alternatives which are potentially optimal for 
value functions consistent with the expressed preferences. The preferences are 
expressed either in terms of choice between two or more actual or hypothetical 
(dummy) alternatives, or in terms of tradeoffs. Tradeoffs can, in fact, be viewed 
as statements of indifference between a real and hypothetical alternative, dif
fering on two attributes only. 

In previous papers [32, 36] we have suggested an integrated or generalized 
approach, in which both restrictions on the family of value functions and on the 
decision space can be generated from responses of either the direct comparison 
or tradeoff forms. The approach represents a more formal estimation of the 
underlying value function, based on the piecewise linear additive value function 
concept originally used as the basis for the "UTA" (Utilite Additive) model of 
Siskos [27]. This generalized interactive approach does assume the existence of 
an additive value function, so that the property of preferential independence 
is presumed to hold, and should in principle be checked. On the other hand, 
weaker assumptions than concavity or pseudoconcavity can be made. 

The piecewise linear marginal value functions as used in the interactive meth
ods described here is formulated as follows. The basic model is of the additive 
form: 

m 

(10.7) V(z) = 2:= vi(zd· 
i=l 

Let Zi(min) and Zi(max) represent the limits of attribute values which will require 
consideration (which may often, but need not necessarily, represent the range 
of outcomes amongst the specific alternatives which have to be compared). 
Since the preference ordering implied by (10.7) is unchanged by the addition or 
subtraction of a constant term, we can always define the partial value functions 
such that Vi(Zi(min» = o. 

The partial value function Vi(Zi) is often decomposed into a product of a 
standardized function (e.g. taking on values 0 and 100 at Zi(min) and Zi(max) 

respectively), and an importance "weight". It is convenient in our context to 
retain the unstandardized form, in which case Vi(Zi(max» represents the impor
tance of the increase in values for attribute i from Zi(min) to Zi(max), relative 
to the corresponding increases in the other attributes. We now represent each 
function vi(zd in piecewise linear form. In simulation studies (cf. Section 10.6) 
it has been found that the use of purely linear partial value functions can 
severely bias results, but that this problem can largely be overcome by subdi
viding the function into a small number (as few as 3 or 4) of linear segments. 
For ease of nomenclature, let us assume that the same number of segments (say 
v) is used for each attribute (although this is not essential to the method). The 
v linear segments are defined by v + 1 "breakpoints", including the endpoints 
of the range, say Zi(min) = Zi(O) < Zi(l) < ... < Zi(v) = Zi(max). These could 
be defined by the decision maker directly, or could simply be equally spaced 

CONCEPTS OF INTERACTIVE PROGRAMMING 10-13 

expressed by the decision maker are translated either into explicit restrictions 
on the family of value functions best describing the decision maker's preferences, 
or into restrictions on the set of alternatives which are potentially optimal for 
value functions consistent with the expressed preferences. The preferences are 
expressed either in terms of choice between two or more actual or hypothetical 
(dummy) alternatives, or in terms of tradeoffs. Tradeoffs can, in fact, be viewed 
as statements of indifference between a real and hypothetical alternative, dif
fering on two attributes only. 

In previous papers [32, 36] we have suggested an integrated or generalized 
approach, in which both restrictions on the family of value functions and on the 
decision space can be generated from responses of either the direct comparison 
or tradeoff forms. The approach represents a more formal estimation of the 
underlying value function, based on the piecewise linear additive value function 
concept originally used as the basis for the "UTA" (Utilite Additive) model of 
Siskos [27]. This generalized interactive approach does assume the existence of 
an additive value function, so that the property of preferential independence 
is presumed to hold, and should in principle be checked. On the other hand, 
weaker assumptions than concavity or pseudoconcavity can be made. 

The piecewise linear marginal value functions as used in the interactive meth
ods described here is formulated as follows. The basic model is of the additive 
form: 

m 

(10.7) V(z) = 2:= vi(zd· 
i=l 

Let Zi(min) and Zi(max) represent the limits of attribute values which will require 
consideration (which may often, but need not necessarily, represent the range 
of outcomes amongst the specific alternatives which have to be compared). 
Since the preference ordering implied by (10.7) is unchanged by the addition or 
subtraction of a constant term, we can always define the partial value functions 
such that Vi(Zi(min» = o. 

The partial value function Vi(Zi) is often decomposed into a product of a 
standardized function (e.g. taking on values 0 and 100 at Zi(min) and Zi(max) 

respectively), and an importance "weight". It is convenient in our context to 
retain the unstandardized form, in which case Vi(Zi(max» represents the impor
tance of the increase in values for attribute i from Zi(min) to Zi(max), relative 
to the corresponding increases in the other attributes. We now represent each 
function vi(zd in piecewise linear form. In simulation studies (cf. Section 10.6) 
it has been found that the use of purely linear partial value functions can 
severely bias results, but that this problem can largely be overcome by subdi
viding the function into a small number (as few as 3 or 4) of linear segments. 
For ease of nomenclature, let us assume that the same number of segments (say 
v) is used for each attribute (although this is not essential to the method). The 
v linear segments are defined by v + 1 "breakpoints", including the endpoints 
of the range, say Zi(min) = Zi(O) < Zi(l) < ... < Zi(v) = Zi(max). These could 
be defined by the decision maker directly, or could simply be equally spaced 



10-14 CONCEPTS OF INTERACTIVE PROGRAMMING 

across the interval. Note that the slope of the linear approximation for vi(zd 

over the j-th segment is given by Uij/(Zi(j) - Zi(j-l)} which we shall represent 
by tijUij, where tij = l/(zi(j) - Zi(j-l)}. 

The marginal value function Vi(Zi} is then fully defined by v parameters 
Uij (j = 1, ... , v), where Uij = Vi(Zi(j)} - Vi(Zi(j-l)}, i.e. the increase in value 
corresponding to a change from Zi(j-1) to Zi(j). For an arbitrary value of Zi, 

not necessarily occurring at one of the breakpoints, we can express Vi (Zi) in the 
form: 

(10.8) 
1/ 

Vi(Zi} = L Cij(Zi}Uij 

j=l 

where Cij(Zi} = 0 for each j such that Zi ~ zi(j-l), Cij(Zi} = 1 for each j such 
that Zi 2: Zi(j), while: 

( ) 
_ Zi - Zi(j-1) 

Cij Zi -
Zi(j) - zi(j-1) 

for the segment j (unique if it exists) for which Zi(j-1) < Zi < Zi(j). 

The parameters Uij for i = 1, ... ,m, j = 1, ... , v must be non-negative, and 
need to be standardized in some manner, for example such that 2::1 2:;=1 Uij = 
100. Additional a priori constraints on the Uij can be imposed in order to rep
resent any prior knowledge of the shape of the function. For example, concavity 
would require that: 

(10.9) 

A quite rich family of functional shapes for the marginal value functions, mo
tivated in part by the empirical work of Kahnemann and Tversky [7], is ob
tained by restricting Vi (z;) to be convex, concave or "S-shaped". These three 
forms talcen together imply that once ti,j+lUi,j+l < tijUij for some j, then 
ti,k+l Ui,k+ 1 < tik Uik for all k > j. With a view to the LP estimation proce
dures to be described below, we note that this condition can be enforced by 
defining integer variables 8ij E {O, I} for each attribute i and for j = 2, ... ,v, 
and imposing the constraints: 

(lO.10) 

for suitably "big" M, and: 

(1O.11) 8i ,j+l 2: 8ij for j = 2, ... , v-I 

for each attribute. 
It is interesting to note that a pure "S-shape" can be imposed without re

course to integer variables if v = 4, by simply adding the constraints 

(1O.12) 

Any specific case would be based on one of the above sets of constraints, i.e. 
(1O.9), or (10.10) and (10.11), or (1O.12). We shall generally refer to these as 
"shape constraints", which we note are linear. 
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With this background, an approach essentially similar to that of Zionts
Wallenius can be implemented, with greater scope for modeling changing trade
offs and less need for discarding earlier preference statements. Suppose that 
the decision maker states a preference for za over Zb. This implies the following 
constraint on the Uij: 

m v 

(10.13) L L[Cij(Zf) - Cij(Z~)]Uij ~ O. 
i=1 j=1 

In principle, after any number of such preference statements have been made, 
a "middlemost" estimate of the Uij'S can be obtained by maximizing the min
imum slack across all inequalities of the form given by (10.13), subject to the 
non-negativity and standardization of the parameters, and to any desired shape 
constraints. In fact, by allowing the "slacks" to be negative, this approach will 
also generate the best fit parameter values when the preference statements are 
inconsistent with the model. 

In practice, however, there is (as shown by the studies in [36]) a substantial 
advantage to be gained by searching for "dummy" alternatives between which 
the decision maker is approximately indifferent, much as discussed in the con
text of convex cones above. Some suggestions for achieving this end are given 
in [36]. Note that if the dummy alternatives differ on two criteria only, then this 
becomes equivalent to the assessment of tradeoffs. In any case, if we have two 
attribute vectors, say za and zb (real or dummy), between which the decision 
maker is approximately indifferent, then we would replace (1O.13) by: 

m v 

(1O.14) L L[Cij(Zf) - Cij(Z~)]Uij + d!b - d;;b = o. 
i=1 j=1 

In this case the same middlemost concept is achieved my minimizing the maxi
mum of all the deviation variables (i.e. d!b and d;;b for all pairs {a, b} for which 
an indifference statement has been made). 

The LPs described above are aimed at producing the currently most consis
tent value functions, and by implication the alternative which maximizes this 
value function can be identified (to serve as the current best estimate for the 
optimum alternative). It is also possible to eliminate any alternative a if there 
exists an attribute vector, say ZO which is either an element of Z or is domi
nated by an element of Z, such that a negative value is obtained for the LP 
maximizing: 

m v 

(1O.15) LL[Cij(zf) - Cij(Z~}]Uij 
i=1 j=l 

subject to the relevant constraints (i.e. (10.13) or (1O.14) and the non-negativity, 
scaling and shape constraints). In [32] we proposed that in the discrete alterna
tive case, ZO could be selected to be the attribute vector of the current optimal 
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solution, and that each remaining alternative could be tested against ZO when
ever the optimal solution changed. 

With this background, the interactive algorithm can be summarized in the 
following steps for the case in which the judgements of the decision maker are 
expressed as tradeoffs. (Use of indifferences between more general dummy alter
natives involves appropriate modifications to the third and fourth steps below, 
and replacement of the constraint in step (4) by the more general (10.14).) 

(1) Select an arbitrary initial guess for the Uij values (e.g. all values equal). 

(2) Let V(z) be the value function corresponding to the current estimates of 
Uij' Let ZO be the attribute vector maximizing V(z) subject to z E Z. 
If (in the judgement of the DM) the results have appeared to stabilize, 
then STOP; otherwise go on to the next step. 

(3) If tradeoffs have not yet been assessed at the point represented by zO, 
then set za = zO. Otherwise select a distinctly different attribute vector 
za at which tradeoffs have not been assessed. (If A is discrete, za might 
be the vector maximizing V (z) amongst those elements of Z for which 
tradeoffs have not been assessed; for other problems za may be selected 
by randomly selecting sets of Uij satisfying the current constraints, and 
maximizing the corresponding value function.) 

(4) Selecting one criterion (without loss of generality denoted as criterion 1) 
as a reference, obtain tradeoffs on the other criteria corresponding to a 
fixed increment on the reference criterion (i.e. the amount, say Ti which 
the decision maker would give up on criterion i in order to obtain an 
increase of ~ on criterion 1). In this case the constraint given by (10.14) 
becomes for each i: 

v 

2:[clj(zf +~) - clj(zf)]Ulj + [ciAzf - Td - Cij(zf)]Uij + d~i - d;;i = o. 
j=l 

Relaxations of the need to fix on to one reference criterion is discussed 
in [36]. 

(5) If A is discrete, then apply the LP maximizing (10.15) to eliminate all 
solutions which are no longer potentially optimal. If only ZO remains, 
then stop. 

(6) With the addition of the latest set of constraints on the Uij generated 
in step (4), solve the LP minimizing the maximum over all deviational 
variables subject to the non-negativity, scaling and shape constraints on 
Uij' Return to step 2. 

The numerical results reported in [36], which were based on discrete sets with 
quite large numbers (50-100) of alternatives, indicated that the above procedure 
tended to converge after about 6 or 7 iterations. At this stage, results were 
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effectively identical to that obtained by a priori fitting of a value function in 
the standard manner. It is worth noting that in the case of multiple objective 
linear programming, the piecewise linear approximations generate many more 
basic solutions, reducing the need for detailed exploration of an optimal facet 
(as suggested by Zionts and Wallenius in [43]). 

10.5 PROCEDURES BASED ON ASPIRATION LEVELS 

The procedures discussed in this section are based on the concept of represent
ing values and preferences of the decision maker in terms of "aspiration levels", 
i.e. desirable levels of performance in terms of each attribute. The distinction 
between aspiration level procedures and those previously described can be quite 
fuzzy. We have, for example, in discussing Steuer's interactive weighted sums 
and filtering approach (distinctly a method based on value function approx
imations), referred to enhancements ([30, 31]) which are related to reference 
point methods, and which should perhaps thus also be viewed together with 
the aspiration level methods discussed in this section. It seems, nevertheless, 
helpful to give specific consideration to aspiration level approaches. 

In broad terms, an interactive aspiration level procedure would involve the 
following steps: 

(1) Start with an initial vector of "aspiration levels" for each attribute, say 
g = {gl,g2, ... ,gnl}' 

(2) Find a feasible solution which best approaches these aspiration levels in 
some sense. 

(3) Present the resulting solution to the DM. If the DM is "satisfied" with 
this solution, then the procedure terminates; otherwise the aspiration 
levels (gd are adjusted (either implicitly, or directly by the DM) and the 
procedure returns to the previous step. 

An immediate problem which arises is in the interpretation of the term "as
piration level", which is almost certainly understood differently by different 
users. For some, the aspiration level will be a largely unattainable ideal goal; 
for others it may represent a non-negotiable bottom line or reservation level, 
such that any alternatives which do not meet all aspirations are immediately 
rejected; for yet others, the aspirations may be an a priori assessment of the 
likely characteristics of a desirable solution. At this stage we still lack a fully 
formulated theory as to how decision makers may form and modify aspirations, 
so that the challenge to the interactive implementation particularly is do pro
vide a methodology which is robust to different interpretations of the aspiration 
level concept. 

The basic idea of an aspiration level is central to goal programming and 
to reference point methods which are described elsewhere in this book. The 
original definitions of goal programming were not framed in the context of inter
active methods as we have defined them. It is nevertheless difficult to see how 
goal programming could be implemented in anything other than an interactive 
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sense in most applications, as decision makers are unlikely immediately to be 
able to express realistic goals in any but the most familiar problem settings. 
The interaction may, however, be carried out in a somewhat ad hoc or un
structured manner, rather than in the structured interactions discussed in this 
chapter, although Tamiz and Jones [39] do provide a more formal interactive 
framework for the application of goal programming. 

In this section we shall briefly discuss some aspiration-based methodologies 
which have been developed with an explicitly interactive context in mind. The 
reader is referred to the chapters on goal programming and on reference point 
approaches for more details on the overall philosophies of these methods. 

Some of the earliest approaches which can be seen to fall into the interactive 
aspiration level based category are those of Zeleny's concept of "compromise 
programming" linked to the theory of the "displaced ideal" (Zeleny [41 j), and 
STEM (Benayoun et al. [1]). In both cases, the aspiration levels are not di
rectly specified by the decision mal<er, but are simply the ideals relative to the 
currently specified decision space, i.e. gi = z;* = maxsEZ Zi. The distinctive 
feature of these two approaches is that the interaction with the decision maker 
is not directly aimed at modifying the goals, but at placing constraints on the 
decision space, which in tum modifies the set of alternatives, and hence the 
ideals, under consideration. 

The concept of compromise progmmming is simply to minimize norms of the 
form: 

[ 

m jl/P t; [Wi (gi - zd]P 

for some p ~ 1, which tends to the Tchebycheff norm: 

m!U' [Wi(gi - Zi)] 
• 

as p -+ 00. Note that in this case gi ~ Zi by definition. The weights Wi 
appear primarily to serve the function of ensuring a comparable scaling for 
all criteria (e.g. to normalize all deviations to the [0,11 interval), leaving value 
judgements to be expressed by effective changes in the goals. By minimizing 
the above norm for a variety of values for the exponent p, a range of efficient 
solutions can be identified and presented to decision makers. In the light of the 
solutions generated, decision makers are encouraged to eliminate clearly unde
sirable options (either by eliminating specific alternatives in the discrete case, 
or by inserting lower bounds for achievement on certain criteria). This leads to 
a shift, or "displacement" of the ideal, after which the process is repeated with 
adjustment of the goals to the new ideals. The process ultimately terminates 
when the difference between the ideal and the compromise solutions are found 
to be acceptably small. 

The STEM (or Step Method) approach of Benayoun et al. [1] was formulated 
in the multiple objective linear programming context, but can be generalized to 
other problems, and shares many features with the compromise programming 
approach. The first step is to evaluate the ideals z;* by maximizing Zi subject 
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m jl/P t; [Wi (gi - zd]P 

for some p ~ 1, which tends to the Tchebycheff norm: 

m!U' [Wi(gi - Zi)] 
• 

as p -+ 00. Note that in this case gi ~ Zi by definition. The weights Wi 
appear primarily to serve the function of ensuring a comparable scaling for 
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approach. The first step is to evaluate the ideals z;* by maximizing Zi subject 
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to z E Z for each attribute i. Let z; be the value of attribute i achieved when 
maximizing Zk. Then zi* = zI, while Z.i = minl<k<m{Z;} represents a pes
simistic level of achievement for attribute i. Once again, the ideals are used as 
the initial goals for each criterion, while deviations are minimized in this case 
using the Tchebycheff norm only. Weights are not selected subjectively, but 
are automatically generated for each criterion as the product of (zi* - Z.i)/z'i 
(representing the relative ranges of values available on each criterion) and a 
term which standardizes the objective functions (in the case oflinear program
ming by standardizing the objective function coefficients for each criterion to 
unit Euclidean norm). Suppose that the solution then generated has values Zi 
for each criterion i. Decision makers are required to classify these values into 
those which are "satisfactory" and "unsatisfactory" respectively; in addition, 
an amount (say ~zd is required to be specified for each "satisfactory" criterion, 
being the amount which the decision maker would be prepared to sacrifice on 
this criterion, in order to achieve gains in the "unsatisfactory" criteria. Decision 
alternatives are then constrained to satisfy: 

Zi 2:: Zi - ~Zi for "satisfactory" criteria 

and 
Zi 2:: Zi for "unsatisfactory" criteria. 

This eliminates some alternatives, and leads to a shift in the ideal, after which 
the process is repeated. As each iteration constrains at least one criterion to 
"satisfactory" solutions (unless there are none at that iteration), it follows that 
the process must terminate in at most m iterations, with either a solution 
in which all criteria are "satisfactory", or a definite conclusion that no such 
solution exists (in which case attempts are presumably needed to create or 
discover new alternatives). 

The key to the success of both STEM and compromise programming is 
the ability of decision makers either to specify what constitutes a satisfactory 
level of performance or to identify alternatives which can be eliminated. As 
previously discussed, the process by which this is done is not well-understood, 
but requires at least a substantial degree of global understanding of the available 
tradeoffs, and there must always be some question of the extent to which this 
is true. In problem settings which are relatively familiar to the decision maker 
(for example, in the selection of investment portfolios, which is likely to be a 
repetitive task) the choices may well be justifiable, and it is in such contexts 
that methods such as STEM and compromise programming may well offer an 
efficient means of decision support. 

An approach which has been termed interactive multiple goal programming 
(IMGP), although it does not quite fit into the usual definition of goal pro
gramming, was introduced by Spronk [28]. As with compromise programming 
and STEM, IMGP is also based on a pruning of the decision space, and it is 
interesting to note that the primary applications of IMGP appear to have been 
in capital budgeting and financial planning, i.e. the type of familiar decision 
context to which we have referred. In essence, the IMGP approach is based 
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on presenting the decision maker at each stage of the iterative process with 
what is termed by Spronk a "potency matrix", which consists simply of the 
vectors of ideal and pessimistic values, based on the current decision space. In 
this case the pessimistic values represent effectively a set of guaranteed lower 
bounds on performance for each criterion. At each iteration, the decision maker 
is asked which criterion should be first improved, and a lower bound greater 
than its current pessimistic value is tentatively imposed, and a new set of ideals 
calculated. If the decision maker is satisfied that any consequent losses in the 
ideal values are worth the gain in the guaranteed performance bound for the 
chosen criterion, then the tentative lower bound is made permanent and the 
process repeats. If the decision maker is not satisfied, then provision is made for 
backtracking (i.e. relaxing the tentative lower bound until the decision maker 
is satisfied with the tradeoffs). 

IMGP thus, to a greater extent than the previous two methods, does seek 
to assist the decision maker to explore the decision space, by providing direct 
feedback on the effects of increasing aspirations on one criterion on performance 
levels for the other criteria. This feedback is very approximate however, as 
the loss in ideal may be substantially different to the actual (local) tradeoffs 
which are available. Nevertheless, in some practical experience reported in 
Stewart [331, IMGP appeared to generate more satisfying results than other 
interactive goal programming methods, even though convergence was somewhat 
slower. 

A more systematic form of interactive goal programming, and one which is 
closer to the spirit of the original goal programming, was proposed by Masud 
and Hwang [181. Their approach was formulated in the context of a multiob
jective mathematical programming framework, but the principles seem equally 
appropriate to discrete choice problems. The core of the approach is essentially 
based on the standard Archimedean goal programming formulation (although 
there appears to be no reason why the approach could not equally well be 
applied in the framework of a Tchebycheff formulation), but contains certain 
interesting variations: 

• As in some of the other methods discussed above, weights are not sub
jectively assessed to reflect relative importances, but merely ensure com
parable scaling. In this case, the weights have the effect of re-scaling the 
criterion values so that the difference between gi and zi* is the same for 
each criterion. 

• Apart from the standard goal programming solution, the method also 
generates a further m solutions by solving a sequence of additional goal 
programming problems, in each of which the goal for one of the criteria 
is replaced by a hard constraint (i.e. Zi ~ gi, with no deviations allowed). 
This set of solutions is meant to inform the decision maker when re
assessing the goals (see below). 
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• Non-dominated solutions are avoided by including maximization of over
achievement of goals as a second-order objective in a pre-emptive goal 
programming sense. 

At each iteration of the ISGP process, the decision maker is presented with 
the m + 1 solutions. If one of the m + 1 solutions is satisfactory, the process 
terminates; otherwise the decision maker is asked to revise the goals in the 
light of the solutions presented. The idea is that the multiple solutions which 
are presented inform the decision maker concerning available tradeoffs, thus 
contributing to more realistic goal specifications. The value of the procedure 
nevertheless still depends fundamentally on the abili ty of the decision maker 
to specify meaningful goals. 

The usual goal programming paradigm is based on minimization of the un
derachievement of stated goals. A problem can arise if the goals are unduly 
modest, to the extent that feasible solutions exist satisfying all goals simultane
ously. If the goals are truly levels of universal and objective satisfaction, then 
this may be a pleasing result, but more typically the decision maker would not 
be satisfied with this outcome, especially since the solution generated by the 
algorithm may then be dominated. We have noted that the ISGP procedure 
does recognize this problem, by including maximization of over-achievements 
as a low priority objective (to be sought only after minimization of under
achievement has been completed). The reference point approach described by 
Wierzbicki (Chapter 9 of this book) addresses the problem more directly. In 
this approach, the "reference" level, indicates levels of achievement currently 
viewed as a good starting point for further exploration of the decision space. 
Wierzbicki introduces the concept of a "scalarizing function", which may be 
viewed as a surrogate value function to be applied in the vicinity of the refer
ence point. Optimization of the scalarizing function then produces an efficient 
solution which is in a sense closest to the reference point. In the spirit of inter
active goal programming, the decision maker is required to judge whether the 
solution found is satisfactory (in which case the process terminates), and if not 
to revise the reference values. 

The reference point approach can clearly and naturally be applied in the 
context of the interactive aspiration level approach, as defined at the start of 
this section. The key to applying the reference point procedure is the choice 
of the scalarizing function. Although a number of options have been proposed, 
the most commonly applied form is closely allied to the Tchebycheff norm for 
goal programming, but with two important variations: 

(1) The deviational variables lSi = gi - Zi are permitted to be negative, m 
which case -lSi becomes a measure of over-achievement. 

(2) The scalarizing function to be minimized is: 
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Clearly the min-max term dominates, and while any 8i remains strictly 
positive, is equivalent to goal programming using a Tchebycheff norm. 
Only once all reference levels have exceeded does maximization of over
achievement corne into play. The summation term is weighted by the 
small constant E, and serves primarily to ensure that solutions are non
dominated in cases when the min-max solution is not unique. 

Some of the concepts of the reference point approach were adapted by Kor
honen and Laakso [12] in a multiple objective linear programming context, and 
by Korhonen [II] for the discrete choice problem, to provide a visual interactive 
graphical procedure for applying goal or aspiration level procedures. Starting 
from a particular efficient solution, say z, a "reference direction" (rather than a 
single reference point), say d, is chosen by the chosen by the decision maker. A 
sequence of reference points of the form z + Od is then generated, and projected 
on to the efficient frontier by minimizing Wierzbicki's scalarizing function for 
each point. This generates a path along the efficient frontier which the decision 
maker can examine to find a best point. A new reference direction can be 
chosen at this point from which the process can restart. Korhonen and Laakso 
suggest a visualization of the process in terms of a "Pareto race", i.e. driving 
along the Pareto frontier, which has been incorporated into a software package 
called VIG (or VIMDA for discrete choice problems). The current solution at 
any point is represented by bar graphs representing levels of achievement for 
each attribute. By pressing "accelerator" or "brake" keys the user can see how 
these levels change as one moves along the current direction, and can reverse 
direction by changing "gears". At any stage, the user can change direction by 
requiring greater emphasis on a specified attribute. 

Another practical implementation of the reference point approach in an in
teractive framework, with associated software, is AIM (Aspiration-level Interac
tive Model) as described in Lotfi et al. [15]. This implementation was originally 
designed for discrete choice problems, but a generalization to multiple objec
tive linear programming problems has also been proposed by Lotfi et al. [16]. 
The initial reference level is generated as a median value for each criterion, and 
information is provided to the decision maker at each stage as to the feasibility 
of the current reference level (expressed in terms of proportions of the decision 
space satisfying the references levels singly and jointly), and the relative sizes 
of the increments which are available for each criterion. Overall, however, the 
problem remains in any implementation, that if the decision maker indicates 
shifts in reference level which are strongly at odds with available tradeoffs, then 
the solution generated at the next iteration may be perceived to be worse than 
before and the process may be terminated prematurely. The idea from ISGP, 
of generating a m + 1 feasible solution for comparison, could be incorporated 
here with some benefit. 

An interactive implementation of a reference point approach in much the 
same philosophy as that of AIM, but in the context of selecting a portfolio of 
R&D projects (which is a multiple objective integer programming context), is 
described in Stewart [34]. 
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One theoretical problem relevant to the development and use of interactive 
methods based on aspiration levels, is the lack of a comprehensive theory as 
to how decision makers form and modify their aspirations (or goals or refer
ence levels). This points to the need for a programme of behavioural research 
to support the algorithmic developments, similar to the manner in which the 
work of Kahnemann and Tversky (see, for example, [7]) has supported the 
development of utility-based decision support. One potential problem which 
we have previously identified ([33, 38]) is that aspiration-based methodologies 
may tend to terminate too early, especially for discrete choice problems, when 
decision makers fail to perceive sufficient progress being made. For this reason, 
we have suggested in [38] that the following two enhancements be incorporated 
into any interactive aspiration level procedure: 

• Check at each iteration whether the new solution generated is perceived 
by the decision maker to be an improvement on the previous solution, 
and, if not, adjust the direction of change in the aspiration levels towards 
the direction of known preference implied by the comparison between the 
previous and current solutions. 

• Encourage the decision maker to persevere for a few iterations at least, 
even in the absence of improvement. 

10.6 CONVERGENCE PROPERTIES OF INTERACTIVE 
PROCEDURES 

It is almost strange (some may even say irrelevant) to discuss the concept of 
convergence within the context of interactive MCDM methods. The number 
of iterations of the process through which a decision maker may be prepared 
to go is likely to be too small (possibly around 6 or 8 at most) for any con
cept of mathematical convergence to have much meaning. Furthermore, inputs 
from the decision maker are unlikely to be sufficiently consistent with the as
sumptions of mathematical programming theory for any mathematical proofs 
of convergence to have validity. Some of the problems inherent in determin
ing convergence properties are evident in the study of convergence of reference 
point methods reported by Bogetoft et al. [2], where they need to include pro
cedures for '''guiding' the decision maker in his choice of new reference points" . 
In addition, it can quite legitimately be argued that the primary purpose of in
teractive methods is for the decision maker to gain understanding of the space 
Z and of his/her preferences in that space, and thus that "convergence" to 
a particular solution is uninteresting. Even when termination of the process 
within a finite number of steps can be proven (as in STEM, for example), this 
may not promote efficient learning and understanding, and may not identify 
the decision maker's most preferred alternative. 

In spite of the above conceptual problems, however, it remains important 
for there to be some assurance that the decision aiding methodologies do not 
of themselves bias the results towards particular types of solutions, and do 
lead to a point at which the decision maker has some confidence in the solu-
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tion found. Attempts at seeking such assurance include empirical studies (e.g. 
Buchanan [3]) and numerical studies (e.g. Shin and Ravindran [26]). 

In a series of studies ([36, 37, 38]), we have suggested the use of comprehen
sive simulation methods, in which various "non-idealities" of decision makers 
in responding to the interactive questions, and errors in the assumptions made 
concerning preference structures, can be modeled. The effects of such non
idealities and errors on the solutions obtained with various interactive methods 
can thus be assessed systematically. The simulation approach proposed in the 
above references (elaborated in greatest detail in [37]), starts with a hypothet
ical decision maker whose long-run goals are assumed to be consistent with a 
preference structure which satisfies assumptions of completeness, transitivity 
and preferential independence for an ideal set of m criteria (on which the per
formance measures Zi are defined). These assumptions imply the existence of 
an additive value function, defined on the Zi, representing these long-run goals, 
even though in the short-term (during the learning and preference construction 
process) the decision maker's perceived preferences and responses may not be 
consistent with any such additive function. It is important to note that this 
value function need not necessarily be explicitly knowable or accessible. In fact, 
the reason for adopting aspiration-based methods in practice may well be that 
the elicitation of an explicit value function is impractical in the light of the 
problem setting and time and resource constraints. 

The above assumptions are consistent with the philosophy of decision aid 
aiming to support the construction of preferences consistently with desirable 
"rationality" properties. We note also that the ideal marginal (single crite
rion) value functions may in principle include sharp thresholds and changes 
in slope, and may be "S-shaped" (rather than purely concave, for example), 
properties which may be masked in the assessment process, leading to non
ideal behaviour even for interactive methods based on additive value function 
approaches, in spite of assumptions which seem to be biassed in favour of such 
approaches. In applying the simulation, it is also assumed that in practice the 
m ideally preferentially independent criteria may be corrupted by the inadver
tent elimination of some criteria (so that alternatives are described in terms of 
q :s m attributes), and/or by mixing of the remaining criteria which destroys 
preferential independence. OM responses are assumed to be consistent with 
the underlying idealized preference structure, with unmodeled criteria assumed 
(unconsciously) to be fixed at some neutral reference level. 

The reader is referred to the original references for details as to how the 
simulations were carried out for different types of procedure. Perhaps the key 
conclusions can be summarized as follows: 

(1) The generalized interactive value function approach described in Sec
tion lOA requires approximately the same number of value judgements 
from the decision maker as that required to estimate a value function 
directly, in order to obtain the same level of precision of solution. 

(2) It is extremely valuable to model non-linearities in preference structure 
directly (as with the piecewise linear models described in Section 10.4), 
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but there is little gain in modeling such non-linearities to greater preci
sion than that obtained from a piecewise linear model with three or four 
segments. 

(3) Violation of preferential independence assumptions when constructing a 
hierarchy of criteria can seriously bias solutions obtained from value func
tion methods, but has little or no influence on the performance of aspi-· 
ration level methods. 

(4) Aspiration level methods may tend to terminate to early in the absence 
of enhancements such as those described at the end of Section 10.5. 

(5) Apart from the previous two points, the quality and sensitivity of so
lutions obtained from either methods based on value functions or those 
based on aspiration levels are essentially the same. 

Overall, the conclusions that can be drawn from the simulation studies cited 
above are that interactive methods do (if used with some care and under
standing) lead to solutions to the decision problem which can be adopted with 
confidence. Choice between interactive methods, or between interactive and 
"non-interactive" methods, can and should be based on what is more com
fortable for the decision maker, and on the (sometimes conflicting) needs for 
building understanding and for providing an adequate "audit trail" regarding 
how the final recommendation was reached. 
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Abstract: The purpose of this chapter is to present the so-called outranking 
approach, which was proposed in about 1970 by B. Roy as a complementary 
approach to multiattribute utility theory. After the description of the moti
vation and of the basic principles, we present about ten methods, give some 
comments on the determination of their parameters and illustrate how theoret
ical results can help to choose a method. The bibliography contains the most 
known references on the subject. 

11.1 PRELIMINARY DEFINITIONS AND NOTATIONS 

We denote by A the set of alternatives (decisions, solutions, candidates, ... ) 
which has to be explored in the decision process. IT not otherwise mentioned, 
we consider that A is finite. 

A binary relation n on A is a subset of Ax A. It is said to be 

- symmetric iff anb ~ b1?a, V a, b E A, 

- asymmetric iff anb ~ b~a, V a, b E A, 

- complete iff a~b ~ bna, Va, bE A, 

- transitive iff anb, bnc ~ anc, V a, b, c E A, 

- a complete preorder iff it is complete and transitive, 

- a partial preorder iff it is transitive and not complete. 

Defining a valued relation on A consists in associating a real number with every 
ordered pair (a, b) of elements of A. 

A criterion 9 is a real valued function defined on A and representing prefer
ences according to a certain point of view, in the sense that 

{ 
g(a) > g(b) 
g(a) = g(b) 

iff a is preferred to b, 
iff a is indifferent to b. 

It is well known that the preferences can be represented by a criterion iff the 
relation n, defined by 

anb iff a is preferred or indifferent to b, 

is a complete preorder. 
A pseudo-criterion is (g, q,p) a triplet of real valued functions representing 

preferences according to a certain point of view, in the sense that 

{ 

g(a) > g(b) + p(g(b)) iff a is strictly preferred to b, 
g(b) + p(g(b» 2: g(a) > g(b) + q(g(b»iff a is weakly preferred to b, 
a is indifferent to b iff there is no strict or weak preference between them. 
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The functions q and p are respectively called indifference and preference thresh
olds. They can be constant or not. If not, they are assumed to satisfy some 
coherence conditions. The underlying preference structure is called a pseudo
order (see Roy and Vincke [62]). In the particular case where p == q, the 
structure is a semiomer and (g, q) is called a quasi-criterion. 

11.2 WHY AN OUTRANKING APPROACH? 

Decision-aid can be based on preference models which are expressed by a unique 
numerical function: it is the case in utility (or value) theory, in econometrics, 
in many financial models, in mathematical programming, and so on. It is also 
the case, in the framework of MCDM, in multiattribute utility (or value) theory 
and in most of the methods of multiobjective programming. Two main advan
tages of such models are the fact that they exclude any incomparability and 
that the preferences are transitive, so that ranking the alternatives or choosing 
the so-called "best" one are trivial operations (even if they necessitate many 
calculations). These advantages have of course a counterpart: all the impreci
sions, incertitudes, arbitrary aspects of the so-called "data" (which in general 
are not given but must be built) and of the parameters of the method are finally 
aggregated in one number for each alternative. The consequence is that this 
aggregated information is sometimes delicate (even if some sensivity analysis 
can help) is this approach mixes all the ambiguities and conflicts into one num
ber and treats in the same way very well established and precise evaluations or 
very uncertain and fuzzy ones. The question then is to be sure that the final 
decision is really justified by the characteristics of the initial problem and not 
by the mathematical properties of the method. 

Another approach consists in working on preference models which point out 
the more or less solid aspects of the information. This means that such models 
accept incomparabilities and do not impose any transitivity propertiesj this also 
means that the preferences cannot be expressed by a unique numerical function 
and, consequently, that ranking the alternatives or choosing the best one are not 
trivial problems any more. The outranking approach is based on this kind of 
model. Scientists are sometimes hindered by the fact that this approach is based 
on preference models including incomparabilitiesj however, incomparability has 
to be considered as interesting and important as "preference" or "indifference". 
To conclude that two alternatives are incomparable is also decision-aiding: it 
points out the conflicts or lack of information and invites the analyst and the 
decision-maker to go deeply (if they want to do so) into some aspects of the 
problem. The resolution of a decision problem is a dynamic process where 
the preferences evolve with the information: in this context, it is useful to 
have models which are able to represent the preferences at the interpretation 
of each step of the process and, particularly, at steps where some alternatives 
are (eventually temporarily) incomparable. 

Here are some examples of situations where the outranking approach can be 
justified (Roy and Bouyssou [55]): 
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- when at least one criterion is not quantitative, so that preference intervals 
ratios have no sense, 

- when the units of the different criteria are so heterogeneous that coding 
them into one common scale seems to be very difficult or artificial, 

- when the compensations between gains on some criteria and losses on 
other criteria are not clear, 

- when some preference or veto thresholds have to be taken into account. 

Of course, the outranking approach is complementary to the other approaches, 
whose interest is not in question. Too often this approach (sometimes called 
French or European approach) has been contrasted with multiattribute util
ity theory (called American approach) or to multiobjective optimization. This 
opposition has no sense: each approach has advantages, disadvantages and 
pertinent fields of applications. They often can be mixed in the treatment of 
concrete situations. Confronted to a particular problem, the role of the scientist 
is to use appropriate tools or combinations of tools in order to progress in the 
resolution of the problem. The outranking methods are tools among others. 

11.3 BASIC PRINCIPLES OF THE OUTRANKING APPROACH 

The specialists of the outranking approach traditionally consider that the out
ranking methods consist of two steps: 

i) the building of the outranking model, which represents the holistic pref
erences and which can be formed by one or several valued or crisp binary 
relations; the outranking concept was defined for the first time by B. Roy 
(see for example [48]) and can be schematized as follows: an alternative a 
outranks b if, given the information about the preferences of the decision 
maker, there are sufficient arguments to affirm that a is at least as good 
as b and there is no really important reason to refuse this assertion. The 
various outranking methods which can be found in the literature differ in 
the way they formalize this definition. 

ii) the exploitation of the outranking model in function of the problem to 
solve; B. Roy [51] defines three main problems: choosing alternative(s), 
sorting them into categories or ranking them from the best to the worst, 
but many variants and combinations can occur in the practical appli
cations (see Bana e Costa [3]). As mentioned in the previous section, 
the second step is usually not trivial, due to the fact that an outrank
ing model does not satisfy, in general, nice mathematical properties like 
completeness and transitivity. 
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11.4 OUTRANKING METHODS 

11.4.1 Introduction 

Not all the outranking methods can be presented in detail here. We confine 
ourselves to eight of them: the oldest ones (in order to illustrate the basic 
principles), the most common ones (which are often mentioned in the liter
ature) and some others which are rarely mentioned but which contain some 
particularities. 

Section 11.4.11 presents an overview of these methods and section 11.4.12 
gives a brief description of some other ones. 

11.4.2 ELECTRE I (Roy [47]) 

ELECTRE I is already 30 years old: as it was the first historically and as the 
formulae are rather simple, giving a good illustration of the basic principles, 
we recall once more how it works. 

The basic information is a set of n criteria {g1, g2, ... , gn} on A and, for each 
of them: 

- a "weight" wi> expressing the relative importance of criterion gj (see 
section 11.5.1), 

- a veto threshold Vj(gj) > 0 (see section 11.5.2). 

For each ordered pair ( a, b), a concordance index c( a, b) is calculated by 

1 
c(a, b) = W L Wj, 

j:g;(a)';::g;(b) 

where 
n 

W= LWj. 
j=1 

This index varies from 0 to 1 and can be considered as a measure of the argu
ments in favour of the assertion "a outranks b" . 

Then, choosing a concordance level s, a is declared to outrank b, denoted by 
aSb iff: 

c(a, b) 2: s, 

v j such that gj(a) < gj(b), the interval 
(gj(a),gj(b)) is smaller than vj(gj(a)). 

As we see, this formalization corresponds to the definition of outranking given 
in the basic principles. 

Note also that the outranking relation is unchanged if we transform the 
weights in such a way that the ordering of their partial sums (obtained for 
all the subsets of criteria) is maintained (and assuming that the concordance 
level is modified in the same manner). We can for example multiply all the 

OUTRANKING APPROACH 11-5 

11.4 OUTRANKING METHODS 

11.4.1 Introduction 

Not all the outranking methods can be presented in detail here. We confine 
ourselves to eight of them: the oldest ones (in order to illustrate the basic 
principles), the most common ones (which are often mentioned in the liter
ature) and some others which are rarely mentioned but which contain some 
particularities. 

Section 11.4.11 presents an overview of these methods and section 11.4.12 
gives a brief description of some other ones. 

11.4.2 ELECTRE I (Roy [47]) 

ELECTRE I is already 30 years old: as it was the first historically and as the 
formulae are rather simple, giving a good illustration of the basic principles, 
we recall once more how it works. 

The basic information is a set of n criteria {g1, g2, ... , gn} on A and, for each 
of them: 

- a "weight" wi> expressing the relative importance of criterion gj (see 
section 11.5.1), 

- a veto threshold Vj(gj) > 0 (see section 11.5.2). 

For each ordered pair ( a, b), a concordance index c( a, b) is calculated by 

1 
c(a, b) = W L Wj, 

j:g;(a)';::g;(b) 

where 
n 

W= LWj. 
j=1 

This index varies from 0 to 1 and can be considered as a measure of the argu
ments in favour of the assertion "a outranks b" . 

Then, choosing a concordance level s, a is declared to outrank b, denoted by 
aSb iff: 

c(a, b) 2: s, 

v j such that gj(a) < gj(b), the interval 
(gj(a),gj(b)) is smaller than vj(gj(a)). 

As we see, this formalization corresponds to the definition of outranking given 
in the basic principles. 

Note also that the outranking relation is unchanged if we transform the 
weights in such a way that the ordering of their partial sums (obtained for 
all the subsets of criteria) is maintained (and assuming that the concordance 
level is modified in the same manner). We can for example multiply all the 



11-6 OUTRANKING APPROACH 

weights by a same number; if the new weights are integers, the building of the 
outranking relation in ELECTRE I can be interpreted as a voting procedure 
with a special majority rule (characterized by the concordance level). 

Having the outranking relation S, which can be represented by a graph where 
the vertices represent the actions, one seeks a subset N of actions such that: 

{
Vb E A \ N, 3a EN: aSb, 
V a,b EN, a$b. 

One aims to find a subset N of actions such that any action which is not in N 
is outranked by at least one action of N and the actions of N are incomparable 
(the latter condition allows to render N minimal for inclusion). In graph theory, 
this type of set is called a kernel of the graph and there exist procedures to 
determine it. Let us also recall that if the graph has no circuit, the kernel exists 
and is unique. One possible technique consists in reducing the initial graph's 
circuits (i.e. replacing each circuit by a unique element, which is equivalent 
to considering the actions in the circuit as tied), but the latter operation may 
eliminate a great deal of the information contained in the outranking relation. 
Another technique consists in using the concept of minimum weakness quasi
kernel (see Hansen et al. [23]). 

In order to advance towards the best possible compromise, a more refined 
analysis of the kernel's actions must be performed. Practically, it is advised to 
use fluctuations of the method's parameters and to study the sensitivity of the 
result with respect to those variations. The latter sensitivity analysis can also 
be used to break up ties between the kernel's actions. 

11.4.3 ELECTRE IS (Roy and Skalka [60}) 

This method is an adaptation of ELECTRE I to the case where indifference 
and preference thresholds are defined for some criteria and must be taken into 
account in the building of the outranking relation. The interested reader will 
find in Roy and Bouyssou [55] all the details about that method. 

11.4.4 ELECTRE II (Roy and Bertier [54}) 

We give here the original presentation of this method; the reader will find 
in Nadeau et al. [37] a more recent and more sophisticated variant, called 
ELECCALC. 

The basic information is a set of criteria {91, 92, ... , 9n} on A and for each 
of them: 

- a "weight" Wj, expressing the relative importance of criterion 9j, 

- two veto thresholds vJ and vI such that vJ ::; vI . 
For each ordered pair (a, b), a concordance index c( a, b) is calculated by 

1 
c(a, b) = W L Wj, 

j:gj(a)'2:gj(b) 
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where 
n 

w= LWj. 
j=1 

This index varies from 0 to 1 and can be considered as a measure of the argu
ments in favour of the assertion "a outranks b" . 

Then choosing two concordance levels s1 and s2, such that S1 > S2, two 
outranking relations 8 1 and 8 2 are determined as follows: for i = 1,2, we have 
a8i b iff : 

L Wj> L Wj, 

j:gj(a»9j(b) j:9j(a)<9j(b) 

v j such that gj(a) < gj(b), the interval (gj(a),gj(b)) is 
smaller than v} (gj(a)). 

It is clear that 8 1 C S2: S1 is called strong outranking (and is only satisfied 
when outranking is not disputable) and S2 is called weak outranking (in the 
sense that it is less reliable). 

As in ELECTRE I, we can multiply all the weights by a same number in 
order to obtain integers and without changing S1 and S2, so that the building 
of these relations can be interpreted as the application of a voting procedure. 

The class of best actions (the first class of the ranking) is obtained as follows: 
after reducing the circuits of S1 (cf. ELECTRE I), one determines the set B of 
actions which are not strongly outranked by any other action; inside that set, 
the circuits of S2 are reduced and one determines the set A l of actions which 
are not weakly outranked by any other action of B. The set A 1 is the first class 
of the ranking and the procedure is started again in the remaining set, thereby 
yielding a complete preorder. 

A second complete preorder is built in an analogous way but by starting with 
the class of worst actions (those which outrank no other action) and "going up" 
toward the best actions. 

The two preorders obtained are, in general, not the same: if they are close, 
the decision-maker is offered a "median preorder" (for details, see Roy and 
Bertier [54]). Otherwise, a more thorough study is required since it is possible 
that the data are too divergent to be able to build an acceptable complete 
preorder. In both cases, a robustness analysis is obviously necessary. 

Note for example, that if a certain action doesn't outrank any other and 
is itself outranked by no other (in other words, if it is difficult to compare it 
with the others), it will appear as first in the first ranking and as last in the 
second: the comparison between the two complete preorders is thus quite useful 
to detect "problematic" actions. This is why it is advised to build the partial 
preorder resulting from the intersection of the two complete preorders. 

Another way to obtain the complete preorders is based upon the degrees of 
the graph's vertices, i.e. the number of actions which strongly outrank and 
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which are strongly outranked by each action, ties being eliminated on the basis 
of the weak outranking relation (see the Section 11.6 for a comparison of these 
different ways for obtaining complete preorders). 

11.4.5 ELECTRE III (Roy [49]) 

The basic information is a set of n pseudo-criteria {(gj, qj, Pj), j = 1, ... , n} 
on A and, for each of them: 

- a "weight" Wj, expressing the relative importance of criterion 9j, 

- a veto threshold Vj (9j) > O. 

For each ordered pair (a, b), a concordance index c(a, b} and discordance indices 
dj (a, b) are calculated as follows: 

where 

and 

1 n 
c(a, b) = W L wjcj(a, b), 

j=1 

n 

W= LWj. 

j=1 

{

I if 9j(a} + qj (9j(a» ~ 9j(b), 
cj(a,b) = 0 if 9j{a) + Pj (9j(a» ~ gj(b), 

linearly decreasing in the intermediary region; 

{ 

0 if gj(a) + Pj (9j(a» ~ 9j(b), 
dj(a, b) = 1 if 9j(a) + Vj (9j(a» ~ 9j(b), 

linearly increasing in the intermediary region. 

The concordance index c( a, b) can be considered as a measure of the arguments 
in favour of the assertion "a outranks b", while the discordance indices dj(a, b) 
measure the "strength" of the reasons for refusing this assertion. A valued 
outranking relation is then defined by calculating, for each ordered pair ( a, b), 
the quantity 

{ 

c(a, b) if dj(a,b} ~ c(a, b), 

S(a, b) = IT 1- d·(a b) 
c(a, b). 1 _ :(a 'b) , 

jEJ(a,b) , 

Vj 

where J(a, b) is the set of criteria j such that dj(a, b) > c(a, b). Sea, b) can be 
interpreted as a measure of the credibility of the assertion "a outranks b". The 
advantage of working with a valued outranking relation is the fact that it is 
less sensitive to a variation of the necessarily somewhat arbitrary values of the 
parameters. 
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The value>. = max8(a,b) is determined and only the arcs having values 
a,bEA 

sufficiently close to >. are considered, i.e. more precisely, those which have a 
value larger or equal to >. - s(>.) where s(>.) is a threshold to be determined 
(it allows the values close enough to >. to be defined). The latter yields a non
valued outranking relation for which the qualification Q(a) of each action a can 
be computed (that is the number of actions which are outranked by a minus 
the number of actions which outrank a). The set of actions having the largest 
qualification will be called the first distillate D1 • 

If D1 only contains one action, the previous procedure is started again in 
A \ D 1 . Otherwise, the same procedure is applied inside D 1 ; if distillate D2 
which is thereby obtained is a singleton, the procedure is started again in D1 \D2 
(except if the latter set is empty) j otherwise, it is applied inside D2 , and so 
forth until D1 is used up entirely, before starting with A \ D1. This procedure, 
which is called a descending distillation chain, yields a first complete preorder. 

A second complete preorder is obtained by an ascending distillation chain, 
in which the actions having the smallest qualification are retained. 

The information which can be drawn from these two preorders is analogous 
to that obtained by ELECTRE II. For an example of robustness analysis, we 
recommend the work of Roy, Present and Silhol [58]. 

11.4.6 ELECTRE IV (Roy and Hugonnard [56]) 

A characteristic of this method is the fact that it does not introduce any weight 
expressing the relative importance of the criteria. 

The basic information is a set of n pseudo-criteria {(gj, qj, Pj), j = 1, ... , n} 
on A and, for each of them: 

- a veto threshold Vj (gj) > o. 
Two embedded outranking relations, a strong one 8 1 and a weak one 8 2 , are 
defined as follows: 

or 

-!!{j : gj(a) + Qj(gj(a» < gj(b)}11 ::; 
II{j : gj(b) + qj(gj(b» < gj(a)}lli 

there exists exactly one criterion k such that 
gda) + vk(gk(a» 2: gk(b) > gk(a) + Pk(gk(a», 

where IIAII denotes the number of elements contained in the set A. 
The reader will find in Roy and Bouyssou [55] a more refined variant based 
on five embedded outranking relations instead of two. It is clear that a lot of 
variants can be considered according to the context of the application. 
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The fact that no weight is introduced to express the relative importance 
of the criteria does not imply that the method is only applicable when all the 
criteria have the same importance (even if the definitions of 8 1 and 8 2 are based 
on some counting of criteria). The reader will find in Roy and Bouyssou [55] 
some interesting comments on the underlying assumptions of the method with 
respect to the importance of the criteria. 

The exploitation is performed as in ELECTRE III (distillations) but is made 
simpler by the fact that there are only two outranking levels. One determines 
the subset D1 of actions which have the largest qualification in A for 8 1 (re
member that the qualification of a is the number of actions outranked by a, 
minus the number of actions which outrank a). If D1 is a singleton, qualifica
tions are computed again in A \ D1 and the subset D2 of actions which have 
the largest qualification in A \ D1 for 8 1 is determined, and so forth. When a 
Dh contains more than one action, the same procedure is applied inside Dh but 
on the basis of relation 8 2 • This descending procedure terminates when all the 
actions are ranked in a complete preorder. A second complete preorder is built 
by an ascending procedure (by determining each time the actions which have 
the smallest qualification). The information drawn from these two procedures 
is analogous to that obtained in ELECTRE II or ELECTRE III. 

11.4.7 ELECTRE TRI (Roy and Bouyssou [55]) 

The basic information is a set of n pseudo-criteria {(gj, qj, pj), j = 1, ... , n} 
on A and, for each of them: 

- a "weight" Wj expressing the relative importance of criterion gj, 

- a veto threshold Vj(gj) > O. 

Moreover, as the purpose of the method is to assign the alternatives to k prede
fined ordered categories, the reference alternatives bh (h = 0, ... , k), considered 
as defining the limits between the categories, are defined by the vectors of their 
values for functions gj, denoted by (g~, . .. , g~) in such a way that 

g; > g1-1
, V j; V h E {l, ... ,k}. 

Giving an alternative a, an outranking relation is then built on the set 

{a} U{bh
, h = 0, ... , k}. 

One way is to calculate a valued outranking relation as in ELECTRE III method 
and to only consider the values greater or equal to a certain level, but any 
other way can be considered. The pessimistic assignment procedure consists in 
assigning a to the highest category ch such that a outranks bh - 1 . The optimistic 
assignment procedure consists in assigning a to the lowest category cl such that 
bl strictly outranks a. 

The reader will find in Roy and Bouyssou [55] a detailed discussion on the 
theoretical properties and the practical aspects of this method (in particular a 
comparison of the pessimistic and optimistic procedures). 
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11.4.8 PROMETHEE I and II (Brans et aI. [15]) 

The basic information is a set of n so-called generalized criteria (9j, Fj ) on A, 
and, for each of them: 

- a "weight" Wj expressing the relative importance of criterion gj. 

A valued strict preference relation is defined by calculating, for each ordered 
pair (a, b), the quantity 

where 
n 

W= LWj, 
j=l 

and Fj (a, b) is the degree of preference of a over b for criterion j. 
Fj(a, b) is a number, between 0 and 1, which increases with the interval 

between 9j(a) and gj(b). It is determined on the basis of a battery of func
tions which are discussed with the decision-maker and which are presented in 
Fig. 11.1. For each criterion gj, a particular function F j is chosen and the 
corresponding parameters (qj,pj or aj) are fixed. In the original method, these 
parameters are constant but there is no conceptual difficulty to consider that 
they vary with the position of the interval between gj(a) and 9j(b). 

Note that the valued relation defined here is a preference relation and not 
an outranking relation as, by construction, n(a, a) = 0, Va. Note also that no 
discordance aspect was introduced in the original method. 

Just as in the previous methods, two complete preorders are built: one 
consists in ranking the actions following the decreasing order of the numbers 

¢+(a) = L n(a,b) (outgoing flow), 
bEA 

and the other following the increasing order of the numbers ¢ - (a) such that 

¢-(a) = L n(b,a) (ingoing flow). 
bEA 

Their intersection yields the partial preorder of the PROMETHEE I method. 
The PROMETHEE II method consists in ranking the actions following the 
decreasing order of the numbers ¢(a) such that 

(generalizing the concept of qualification from the previous methods) and thus 
yields a unique complete preorder. 
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1st form Fj(". b) 

o 

2nd form 

o qj 

3rd form Fj(". b) 

o Pj gj(") - gj(b) 

F;Ca, b) 4th form 1 

t 
- gj(") - 9j(b) qj Pj o 

~ Fj(".b) 

qj Pj 9j(") - 9j(b) 

5th form 

l~ Fj(".b) 

------O,-,=--::,,:-:j------- 9j(") - 9j (b) 

6th form 

• Immediate strict preference 

• No parameter to be determined 

• There exists an indifference threshold 

which must be fixed 

• Preference increases up to a 

preference threshold to be determined 

• There exists an indifference and a 
preference t.hreshold which must be fixed 

between the two, preference is average 

• There exi.t an indifference and a 

preference threshold which must be 

fixed; between the two, preference 

increases 

• Preference increases following a normal 

distribution, the standard deviation of 

which mud be fixed 

Figure 11.1 Preference functions 

The PROMETHEE method gave birth to the development of a very user
friendly sofware called PROMCALC which includes, besides the interactive 
construction of functions Fj and the determination and exploitation of the 
valued outranking relation, a sensitivity analysis of the result with respect to 
the weights Wj (cf. Mareschal [29]). The GAIA software yields, on the basis 
of the results determined by PROMCALC, a geometrical representation of the 
actions and of the criteria by application of a principal components analysis 
(cf. Mareschal and Brans [30]). 

11.4.9 MELCHIOR (Leclercq [26]) 

A family of n pseudo-criteria is at hand, provided with a relation T such that 
iT j means: "criterion i is at least as important as criterion j". No assumption 
is made beforehand on the properties of T. The basic idea is to say that a 
outranks b if the criteria which are unfavourable to the latter assertion are 
"hidden" by those which are in its favour and if no criterion j exists such that 
gj(b) > gj(a) + Vj, where Vj is a veto threshold (no discordance). 

It remains to define what we call: 

• criteria which are in favour of the outranking of b by a, 

• criteria which are unfavourable to the outranking of b by a, 
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• "to hide". 

The author of the method proposes the following definitions: 

• A criterion j will be said to be in favour of the outranking of b by a if 

(1st definition) 
or 

a (Pj U Qj) b (2nd definition) 
or 

gj(a) > gj(b) (3rd definition). 

• A criterion j will be said to be unfavourable to the outranking of b by a 
if 

(1st definition) 
or 

or 
gj(b) > gj(a) (3rd definition). 

• A subfamily G of criteria "hides" a subfamily H of criteria if, for any 
criterion j of H, there exists a criterion i of G such that 

iTj (1st definition) 
or 

i T j or not (j T i) (2nd definition), 

the same criterion i of G not being allowed to hide several criteria of H. 
Obviously, other definitions could be introduced. 

By choosing two combinations of definitions, one stricter than the other, one 
obtains a strong and a weak outranking relations which are in turn exploited 
as in ELECTRE IV method (the latter in fact coincides with MELCHIOR in 
the particular case where T is empty). Let us note here that the choice of 
combinations of definitions is not arbitrary. Leclercq [26] gives examples of 
coherent combinations, a study of the properties of the resulting outranking 
relations and a numerical example. 

11.4.10 TRICHOTOMIC SEGMENTATION (MoscaroJa and Roy [35]) 

The procedure described in this section was built in order to help a decision
maker who must, during the process of discovering the actions, decide to which 
category he will assign them among several ones. These categories are defined 
in respect of the treatment they will receive later; this kind of situation oc
curs, for example, in loan allocation problems, when launching new products 
or research projects, when awarding promotions, and so on. As indicated by its 
name, this procedure is limited to the case where there are three categories con
sidered: K+, K- and K? (in the example of loan allocation, they correspond 
to "accepting", "refusing" and "awaiting extra information"). 
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Assume the considered actions are evaluated through criteria 91. 92, ... , 9n. 
The procedure consists in fixing (with the decision-maker's help) some pairs 

{b
k

, ck }, k = 1,2, ... , l, of n-dimensional vectors so that if there exists a value 
of k such that 

9j{a) ~ bj, V j, 

then a is assigned to K+; if there exists a value of k such that 

9j(a) ~ cj, V j, 

then a is assigned to K-; if there exists a value of k such that 

bj ~ 9j(a) ~ cj, V j, 

then a is assigned to K? 
Intuitively, the bk,s correspond to "high profiles" for which the decision

maker chooses category K+ without any hesitation (he agrees to award a loan) 
and the ck's correspond to "low profiles" for which the decision-maker chooses 
category K- without any hesitation (he refuses the loan). There is a one-to-

one correspondence between the bk,s and the ck's so that any action offering a 
profile between bk 

and ck (for the same value of k) is assigned to category K? 
Of course, many actions fall into none of the three situations described above. 

The authors therefore recommend to compute, for each action a, the following 
outranking indexes 

k = 1,2, ... ,l, 

where bk and ck respectively denote fictitious actions such that 

V j, 
V j, 

and where outranking indices are computed as in the ELECTRE III method 
(Section 11.4.5). 

The assignment of each action to one of the three categories is performed by 
using a decision tree of the type described in Fig. 11.2, where 

8(a, b) = max8(a, bk ), 
k 

8(b*,a) = max{8(bk ,a): bk:l b}, 

8(2, a) = max8(ck , a), 
k 

8(a,c*) = max{8{a,ck ) : ck :I 2}, 

and where s, t, 5', t' are thresholds to be fixed in function of the considered 
application and in particular by taking into account the inconveniences due to 
an assignment error and those resulting from any assignment to category K? 
(loss of time, extra costs, etc.). See Roy [50] for some examples of applications. 
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S(a,b) ~ s 

~~ 
S(2, a) ~ t S(b*, a) ~ s' 

~ 
S(a,c*) ~ t' 

Figure 11.2 The assignment tree 

11.4.11 Synoptic tableau 

Table 11.1 below summarizes some characteristics of the outranking methods. 
It can be used as a guide to progress in the choice of a method, but not all 
the elements to be taken into account are considered in this tableau (see for 
example Guitouni and Martel [22], for a more complete tableau). In section 
11.7, we will come back to this question of the choice of a method. 
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Table 11.1 Synoptic tableau 

Method References Needed informations Type of relation Final output 

ELECTRE I Roy (47) Criteria. 

I 
One 

I 
Subset of A 

I Veto tbll'esholds outranking 
Weights relaUon 
Concordance level 

ELECTRE IS Roy, Skala [601 Pseudo-criteria 

I 
One 

I 
Subset of A 

I 
Roy, Bouyssou (55) Veto thresholds outranking + some 

Weights relation indices 
concordance level 

ELECTRE II Roy, BertieI' [54) Criteria 

I 
Two imbedded 

I 
Partial 

I 
Pairs of veto thresholds outranking preorder 
Weights relations 
2 concordance levels 

ELECTREIII Roy [49} Pseudo-criteria. 

I 
Valued I Parti.al 

I Veto thresholds outranking preorder 
Weight. relation 
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11.4.12 Some other methods 

The QUALIFLEX method (Paelinck [38)) consists in exploring the set of weights 
which are compatible with the importance relation on the criteria (assumed to 
be a complete preorder) and, for each of them, to determine the ranking of 
the actions which is at minimum distance from the weighted average of the 
rankings yielded by the criteria. 

The ORESTE method (Roubens [46)) combines, in a rather audacious way, 
the ranks of the actions on the criteria with the ranks of the criteria themselves 
(the importance relation on the criteria is also a complete preorder), in order 
to obtain a global rank for each ordered pair (action, criterion) to be used as 
the basis for comparing actions. Pastijn and Leysen [39] bring some light on 
the interpretation of the parameters of the method. 

The TACTIC method (Vansnick [68]) is a way for building a global preference 
relation on the basis of a family of n quasi-criteria, weights and veto thresholds; 
it is rather similar to the first step of ELECTRE I, but adapted to quasi-criteria 
and to the building of a strict preference relation instead of an outranking 
relation. 
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Some outranking methods were also proposed for the treatment of uncertain 
data or decision under risk (see for example D'Avignon and Vincke [18]; Martel 
and Zaras [32]). 

An outranking method can also be obtained when one uses a weighted sum 
with some imprecision on the "weights". This situation was treated for the first 
time in a concrete problem (see Montgolfier and Bertier [19]). New develop
ments were proposed by Bana e Costa [2], Bana e Costa and Vincke [5). 

11.5 SOME COMMENTS ON THE PARAMETERS OF THE 
METHODS 

11.5.1 The "weights" of the criteria 

The "weights" of the criteria are of course crucial parameters in every mul
ticriteria method. The most important remark is that their meaning, hence 
the way to assess them, completely depends on the method where they are 
used. In other words, the concept of importance of the criteria has no intrinsic 
interpretation: it depends on the way it is manipulated. To take an example 
outside of the field of outranking methods, it is well-known that the so-called 
"weights" of the weighted sum are nothing more than that tradeoffs between 
the criteria, so that a good question to ask the decision-maker to assess them 
is: "How many units on criteria 9,. are you ready to loose in order to obtain one 
unit more on criterion g/, (the answer gives the ratio between the "weights" of 
the two criteria). 

In that model, the fact that Wj > Wk does not mean that criterion gj is more 
important than criterion g,.: a simple change of units can reverse the inequality. 
So, if values are given to the weights independently of the scales used to express 
the utility functions, then these values cannot be used in an additive model. 

A consequence of this connection between the meaning of the weights and the 
way they are manipulated in the methods is that it is generally a nonsense to 
compare two different methods by applying them to a same numerical example, 
and by using the same weights. 

Another consequence is that it is hazardous to use, in a method, weights 
which are spontaneously given by a decision-maker (this situation is not so 
rare). 

The question of the exact meaning of the weights in the outranking methods 
is not easy: let us examine what we can say on this subject (see also section 
11.5.2 about the veto thresholds which are not completely disconnected from 
the relative importances of the criteria). 

In ELECTRE I and II, as we have seen, the weight of a criterion plays the 
same role as a number of votes in a voting procedure. More rigorously, in 
a non-compensatory method (such as ELECTRE I), one can define a "more 
important than" relation on the set of coalitions of criteria. Given two coalitions 
of criteria G and H (two subsets of family :F), "G is more important than H" 
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if two (real or fictitious) actions a and b can be found such that 

{

a is better than b for all the criteria in G, 
b is better than a for all the criteria in H, 
a and b are indifferent for all the other criteria, 
a is globally better than b 

(because of the non-compensation, one can be sure that the latter definition 
won't lead to any contradiction). If one assumes that this "more important 
than" relation can be represented using n constants Pl , P2, ... ,Pn (associated to 
the n criteria) such that the comparison between G and H is equivalent to that 
between L Pj and L Pj, one is taken back to well-known non-compensatory 

JEG jEH 

methods (on this subject, see Vansnick [68]). From a theoretical point of 
view, this allows some necessary and sufficient existence conditions for these 
"weights" to be established. In practice, their determination can be deduced 
from comparisons between real or fictitious actions. 

Another way of characterizing the nature of the weights used in a method 
consists in seeking the transformations of these weights which are allowed with
out any modification of the method's results and finding inspiration in the re
sults of measurement theory (see Roberts [45]). In a deterministic context, 
most methods permit a multiplication of the weights by a positive constant 
(this allows the weights to be normalized by making them sum to 1). In the 
weighted average method, the latter is the only transformation which is al
lowed (one says that the "weights" make up a ratio scale). In the ELECTRE 
I method, any transformation preserving the order of the coalitions' weights is 
authorized (the weight of a coalition being the sum of the weights of the criteria 
composing it). A great deal of research remains to be done in this direction. 

In ELECTRE III, ELECTRE TRI and PROMETHEE I and II, the exact 
interpretation of the weights is not very easy: in fact they are partly numbers 
of votes (for the non-compensentory parts where Cj ( a, b) or Fj (a, b) are equal 
to 0 or 1) and partly tradeoffs between "degrees of outranking or preference" 
(for the compensatory parts where Cj(a, b) or Fj(a, b) vary between 0 and 1). 

A common aspect of all these methods is that they are not affected by a 
change of units of the criteria; this means that the inequality Wj > Wk implies 
that the role of criterion 9j is really heavier than that of 9k, so that the term 
"weight" can be considered as well appropriate. 

For the practical way of building the weights, many procedures have been 
proposed in the literature (see for example Mousseau [36] for a survey of these 
procedures). Roy and Bouyssou [55] propose (page 301) some principles to be 
respected in such a procedure and describe (page 303) a particular procedure 
in the framework of the outranking approach. 

Finally, it is clear that sensitivity and robustness analysis are necessary to 
complete and validate the results of a method (see section 11.5.3). For the 
reader interested in a reflexion on the concept of importance, see also Roy and 
Mousseau [57]. 
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11.5.2 The veto thresholds 

The veto threshold Vj (gj(a)) is the smallest interval (gj(a), gj(b)), where 9j(a) < 
9j(b), which is sufficient to refuse the assertion that a outranks b. 

In a certain sense, the veto threshold is also connected to the notion of 
importance. To assess its value, the first question is to know whether the 
decision-maker wants to associate a veto threshold to criterion 9j (for each j). 
One way is to present two alternatives a and b such that 

- a is significantly better than b for all the criteria except for 9j, 

- 9j(a) and 9j(b) are respectively one ofthe worst and one ofthe best values 
for criterion 9j. 

If the decision-maker prefers a over b without hesitation, there is no reason to 
introduce a veto threshold associated to 9j (it is generally the case when 9j is 
not very important). 

If the decision-maker has some difficulties in comparing a and b, it is justified 
to introduce a veto threshold. The reader will find in Roy and Bouyssou [55] 
some comments on how to assess the value of this threshold. 

11.5.3 Sensitivity and robustness analysis 

As already mentioned, the analyst must often choose values for parameters 
which are not very well known (because information is never complete and 
reliable) or which are rather technical (because they are necessary to build 
the model): weights, veto thresholds, indifference and preference thresholds, 
concordance levels, ... are necessarily a little bit arbitrary, as well as tradeoffs, 
utility functions or probability distributions in other approaches. One way is to 
choose rather central values in order to obtain a first solution and then to make 
a sensitivity analysis: the influence of each parameter on the solution is studied 
in order to detect the most critical ones and to inform the decision-maker on 
the neighbourhood of the proposed solution (see Mareschal [29], for an example 
about PROMETHEE method). 

Another way is to try to find solutions which are robust in the sense that 
they are good for the different plausible sets of values of the parameters. With 
a robust solution, the decision-maker has some guarantee that the decision 
proposed by the method will not lead to a catastrophe if the values of the 
parameters are different from the values used in the model. This rather new 
concept of robustness should lead to very interesting developments in multicri
teria analysis and operations research (see Roy and Bouyssou [55]; Roy [53]; 
Vincke [73]). 

Just to illustrate this aspect, consider the problem of building an outranking 
relation on a finite set A of alternatives on basis of the following information: 

• n complete preorders (complete and transitive relations) R1 , R2 ,.· ., Rn 
defined on A (rankings of the alternatives according to n qualitative cri
teria or given by n experts), 
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• a "strictly more important than" relation defined in the set of coalitions 
of criteria, i.e. in the set of all subsets N = {I, 2, ... , n}; this relation, 
denoted by Q, is assumed to satisfy the following properties: 

- it is asymmetric and transitive, 

- V C eN, C #; 0 => C Q 0 (every coalition is strictly more important 
than the empty coalition), 

- V C,D,E c N, C Q D => CUE Q D (adding criteria to a coalition 
reinforces its importance), 

- V C,D,E C N, with CnE = 0 and DnE = 0, 
C Q D <=> CUE Q DUE (one can add criteria to or delete common 
criteria from two coalitions without changing the importance relation 
between them), 

- it is not necessarily complete. 

We are looking for a method for building a relation R on A which should satisfy 
the following two conditions: 

{
-Va, b E A : a Ri b, Vi=> aRb; 
- V a, b E A : {i: a Pi b} Q {j: b Pj a} => not b P a, 

where Pi, Pj and P are the asymmetric parts of ~, Rj and R respectively. 
The first condition is unanimity rule while the second condition expresses the 
fact that if the coalition of criteria for which a is strictly better than b is more 
important than the coalition of criteria for which b is strictly better than a, 
then b cannot strictly outrank a. 

A traditional approach would consist to asociate, with each Ri , a "weight" 
Wi such that, 

V C, DeN, C Q D => L Wi > L Wj. 
iEC JED 

Then, on basis of these weights, a rule should be introduced to define R. For a 
given rule different relations R can be obtained, depending on the choice of the 
weights. The idea of robustness is to try to define a rule giving a result which 
is as stable as possible with respect to variations of the weights. 

For example if we decide that two results Rand R' are contradictory if there 
is a pair {a,b} of alternatives such that a P b and b pI a (where P and pI are 
the asymmetric part of Rand R' respectively), we can define a robust rule as 
a rule which never leads to contradictory results. 

In this example, it can be proved (see Vincke [69]) that rule 2 here below is 
robust while rule 1 is not. 

Rule 1: Choose a value k in the interval [.5,1J; 
n 

V a, b E A, aRb iff L Wi ~kLWj 
i:a Ro b j=l 

or {i: a Ri b} Q {j: b Pj a} 
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Rule 2: Choose a value k in the interval [.5,1]; 
n 

V a, b E A, aRb iff L Wi ~kLWj 
i:a R. b ;=1 

and {i: a Pi b} Q{j: b Pj a} 
or a Ri b, Vi 

(Note that rule 2 is also robust for variations of k.) 
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This small example shows how a ~oncept of robustness can help the sci
entist to analyze the characteristics and the differences between two a priori 
reasonable methods. 

11.6 THEORETICAL ASPECTS OF OUTRANKING METHODS 

The outranking methods have often been criticized for their lack of axiomatic 
foundations (see Bouysson et al. [11]). Since a few years several authors have 
attempted to progress in this way; this section proposes a brief overview of the 
main results obtained until now. 

A first interesting question is to ask whether the outranking relations may 
have some structural properties (beside the fact that we know they are in 
general neither complete nor transitive). This question was studied by Bouys
sou [9]; the conclusion is that the relations obtained by ELECTRE methods 
do not possess any particular property (in other words, any relation can be ob
tained). It is not the case of the relations obtained by PROMETHEE methods 
but their characterization is still an open problem. On the other hand, one 
can try to choose the parameters of the methods in order to obtain outrank
ing relations with nice mathematical properties: such a problem is not so far 
from Arrow's problem and social choice theory. Generally speaking, the results 
show that the only way to obtain nice outranking relations is to accept the 
existence of coalitions of criteria which impose their preferences (see for exam
ple Perny [40]). Note also that all these considerations are connected to the 
difficult problem of how to define nice properties of valued (or fuzzy) relations 
(see, for example, Fodor and Roubens [20], or Perny and Roy [41]). 

Another theoretical approach consists in defining potential fundamental prop
erties of the methods and in verifying which properties are satisfied by which 
methods. This kind of research can lead to different types of results: 

- impossibility theorems, showing that some sets of properties are incom
patible and explaining why certain methods cannot satisfy certain prop
erties; 

- characterization theorems, giving, for a particular method, a list of prop
erties which are simultaneously satisfied only by this method and improv
ing so the understanding of the method; 

- typologies of the methods based on fundamental properties, allowing to 
compare them and giving ideas for the development of methods. 

OUTRANKING APPROACH 

Rule 2: Choose a value k in the interval [.5,1]; 
n 

V a, b E A, aRb iff L Wi ~kLWj 
i:a R. b ;=1 

and {i: a Pi b} Q{j: b Pj a} 
or a Ri b, Vi 

(Note that rule 2 is also robust for variations of k.) 

11-21 

This small example shows how a ~oncept of robustness can help the sci
entist to analyze the characteristics and the differences between two a priori 
reasonable methods. 

11.6 THEORETICAL ASPECTS OF OUTRANKING METHODS 

The outranking methods have often been criticized for their lack of axiomatic 
foundations (see Bouysson et al. [11]). Since a few years several authors have 
attempted to progress in this way; this section proposes a brief overview of the 
main results obtained until now. 

A first interesting question is to ask whether the outranking relations may 
have some structural properties (beside the fact that we know they are in 
general neither complete nor transitive). This question was studied by Bouys
sou [9]; the conclusion is that the relations obtained by ELECTRE methods 
do not possess any particular property (in other words, any relation can be ob
tained). It is not the case of the relations obtained by PROMETHEE methods 
but their characterization is still an open problem. On the other hand, one 
can try to choose the parameters of the methods in order to obtain outrank
ing relations with nice mathematical properties: such a problem is not so far 
from Arrow's problem and social choice theory. Generally speaking, the results 
show that the only way to obtain nice outranking relations is to accept the 
existence of coalitions of criteria which impose their preferences (see for exam
ple Perny [40]). Note also that all these considerations are connected to the 
difficult problem of how to define nice properties of valued (or fuzzy) relations 
(see, for example, Fodor and Roubens [20], or Perny and Roy [41]). 

Another theoretical approach consists in defining potential fundamental prop
erties of the methods and in verifying which properties are satisfied by which 
methods. This kind of research can lead to different types of results: 

- impossibility theorems, showing that some sets of properties are incom
patible and explaining why certain methods cannot satisfy certain prop
erties; 

- characterization theorems, giving, for a particular method, a list of prop
erties which are simultaneously satisfied only by this method and improv
ing so the understanding of the method; 

- typologies of the methods based on fundamental properties, allowing to 
compare them and giving ideas for the development of methods. 
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To illustrate this last aspect let us consider two methods which can be found in 
the literature for building a ranking on basis of an outranking relation where 
the circuits have been reduced. 

Let A be the set of alternatives after reduction of the circuits in the out
ranking relation 8. We say that "a is better than b" or that "b is worse than 
a" when a 8 b, and we note a P b when a 8 b and not b 8 a. 

First method 

• Put in the first class the elements of A which are not worse than any 
other element. 

• Remove the elements of the first class. 

• Put in the second class the elements which are not worse than any other 
element in the remaining set. 

• Remove the elements of the second class. 

• Continue this procedure until all the elements are removed. 

Second method 

• Calculate the score of each element of A (the score of a is the number of 
elements which are worse than a minus the number of elements which are 
better than a). 

• Rank the elements in the decreasing order of their score. 

Let us now consider the following list of "reasonable" properties. 

1. if 8 has already the structure of a ranking, than the procedure should 
give this ranking; 

2. if it is possible to obtain a ranking from 8 without deleting any informa
tion contained in 8, then the procedure should propose such a ranking; 
in particular, 

(a) if 8 is transitive, the procedure should give a ranking containing 8; 

(b) if the transitive closure of 8 is a ranking the procedure should give 
this ranking; 

(c) if P has no cycle, the procedure should give a ranking containing P; 

3. the procedure should be independent of the labels of the alternatives; 

4. if a new information is added, which is favourable to alternative a, than 
the position of a in the final ranking should not be depreciated; more 
precisely, if a new relation 8' is obtained from 8 by adding the fact that 
a 8' b (everything else being unchanged), than the place of a in the 
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ranking associated to 8' should be at least as good as its place in the 
ranking associated to 8. 

5. if the class of best elements in the ranking associated to 8 is removed, and 
if the procedure is applied to the remaining elements, then the ranking 
of those remaining elements should be unchanged. 

It can be proved (see Vincke [71]) that the first method satisfies all these prop
erties, while the second one satisfies (1), (2b) and (3) but violates the other 
properties. With such an information, the choice of a method is not completly 
arbitrary: it can be justified on a sound basis. 

In any case, this kind of research is a very efficient way for improving the 
understanding of the methods by the scientists (even if the obtained results are 
not always communicable to the practitioners). 

A lot of work has still to be done in this way, but here are some references 
which illustrate this approach: Henriet [24], Bouyssou [7, 8], Bouyssou and 
Perny [10], Pirlot [42], Vincke [71, 69], Arrow and Raynaud [1], Perny [40], 
Marchant [27, 28], Tsoukias and Vincke [67], Bouyssou and Vincke [14]. 

Finally, let us also mention the suggestion of finding a common framework re
grouping most of the methods for aggregating preferences and based on various 
definitions of compensation and independence of the criteria and on the numeri
cal representation of not necessarily transitive preference structures (see Bouys
sou and Pirlot [12], Pirlot and Vincke [43], Bouyssou, Pirlot and Vincke [13]). 

11.7 HOW TO CHOOSE A METHOD? 

Many elements can be taken into account in order to choose a method, and 
several authors have presented comparative studies of multicriteria methods 
(including outranking methods and other approaches): the interested reader 
can consult Guitouni and Martel [22] for a good survey on these aspects. 

Assuming that an outranking method will be used (see section 11.2 for the 
justification of such a choice), here are some questions to consider for choosing 
the method. 

• What kind of output do we want to obtain ? 

• What kind of information is it possible to obtain as input (different kinds 
of scales for the criteria, different kinds of thresholds, type of information 
about the relative importance of the criteria, ... ) ? 

• Which properties are considered as important for the method ? 

A tableau such as that in Section 11.4.11 and theoretical studies (as those 
mentioned in Section 11.6) can be helpful to cope with these questions. Beside 
them, other more pragmatic or subjective arguments can also be used as, for 
example, the access to a good software, the more or less great effort to be made 
by the analyst to understand the method, the more or less great effort to be 
made to explain the principle of the method to the decision-maker, the access 
to a good specialist of the method, the habits of the analyst, ... 
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However, we consider that the subjective aspects should not lead to com
pletely neglecting the first questions, if we want to give a real scientific status 
to multicriteria decision-aid. 

11.8 SOFTWARE 

For most of the outranking methods, there exist software packages which are 
regularly updated. The best way to obtain them is to directly contact the 
authors of the methods: in general, demo versions can be obtained very easily. 

11.9 APPLICATIONS 

Outranking methods have been used in several concrete applications, although 
this is not really clear from the international journals. The main reason is 
probably the fact that describing a real decision process, with all the hesitations, 
discussions, tentatives, corrections, ... , is a tremendous work and does not 
really possess the good characteristics to be published in a scientific journal. 
On the other hand, reducing the description of the decision process to the strict 
application of a method to a set of data is not very interesting. 

Siskos et al. [66] established a long list of applications. More recent examples 
can be found in Bana e Costa and D. Neves [4], Barda et al. [6], Briggs et al. [16], 
D'Avignon and Mareschal [17], Grassin[21], Hens et al. [25], Royet al. [59], Roy 
et al. [61], Simos [63], Siskos and Hubert [64], Siskos et al. [65]. 

A lot of other examples in French can also be found in the Cahiers and the 
Documents of the Lamsade (collection directed by B. Roy). 
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Abstract: This chapter focuses on the use in practice of multi-attribute 
value theory (MA VT). MA VT is a simplification of multi-attribute utility 
theory (MAUT) in that, unlike MAUT, MA VT does not seek to model the 
decision maker's attitude to risk. As a consequence it rests on simpler 
elicitation procedures which are more widely accepted by practising 
decision makers. The most significant recent advances in this field relate 
not to the underlying theory, but to the way in which MA VT can be, and 
is, used in practice to support decision making. The chapter begins with a 
brief review of the concepts of value theory. An exemplary decision is 
then used to convey a sense of how the process of decision making may 

. currently be facilitated through the use of MA VT. The fmal section 
reviews recent developments which are beginning to impact on practice. 
These relate to: the use of problem structuring methods: advances in 
technology: and organisational developments. 

12.1 INTRODUCTION 
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MA VT can be, and is, used in practice to support decision making. The chapter 
begins with a brief review of the concepts of value theory. An exemplary decision is 
then used to convey a sense of how the process of decision making may currently be 
facilitated through the use of MAVT. The final section reviews recent 
developments which are beginning to impact on practice. 

12.2 INTRODUCTION TO VALUE THEORY 

12.2. 1 Fundamental requirements of value theory 

The principal tenet of value theory is simply that it is possible to represent an 
individual's preferences in a defined context by a value function, V( ), such that if 
option A is preferred to option B then V(A) > V(B). The word "option" is used in a 
broad sense; the available options may be simple objects, such as chocolate bars; 
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they may be complex action plans; they may be alternative futures defined by the 
interaction of different strategies and scenarios. 
For this representation to be possible, the individual's preferences must satisfy the 
following two properties: 

12.2.1.1 Transitivity. Consider any 3 possible options, A, Band C. If a decision 
maker prefers A to Band B to C, then she should prefer A to C. This property is 
clearly apparent in the world of physical measurement; if Alec is taller than Bob and 
Bob is taller than Charlie, then we know that Alec is taller than Charlie. It is also 
intuitively appealing in the context of preference measurement, however, it is argued 
by some that the condition is too strong. Thus, it is perhaps appropriate to delve a 
little more deeply into the issue. 

It is clear that in a descriptive sense an individual's preferences can appear to be 
intransitive. For example, suppose I have depleted my fruit stores to the extent that 
I have available just one apple, one orange and one banana. I choose to eat a banana 
with my breakfast, leaving me to chose between the apple and orange for lunch. I 
choose the orange. Later that afternoon someone gives me another banana (just as 
good as the first one) to add to the remaining apple, broadening the choice available 
for tea. I choose the apple. So we have: 

Banana preferred to orange preferred to apple preferred to banana 

- that is, an intransitive set of preferences. Here it is easy to justify the situation by 
arguing that my preferences are changing during the day, thus the context of the 
decision is changing. For example, at breakfast time my objective is to maximise 
energy in preparation for the day at work, so the banana with its high carbohydrate 
level is the obvious choice. By lunchtime I am quite thirsty and looking for 
something refreshing, suggesting the juicy orange. And when it comes to teatime I 
want something crunchy to accompany soft sandwiches. So, the argument is not that 
intransitive preferences never occur, but that where they do occur it is because of an 
underlying change, in either, or both, of the decision maker's objectives and the 
decision context. Value theory demands that in a static situation preferences should 
be transitive. 

12.2.1.2 Comparability. This second condition demands that, given any two 
options A and B in a specified decision context, a decision maker must be able to 
indicate whether she prefers A to B, or B to A, or is indifferent between the two 
options. 

That is not to say that the decision maker must be able to do this immediately and 
unaided, the rationale of decision analysis is to help in this regard. Neither is it to 
deny that it might be very difficult to compare A and B. 

If these two conditions are satisfied then it is possible to determine a value 
function V( ) such that: 

A P B implies and is implied by V(A) > V(B). 
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A I B implies and is implied by V(A) = V(B). 

Where A P B means the decision maker strictly prefers A to B. 
A I B means the decision maker is indifferent between A and B. 

Such a function is an ordinal value function; it gives information only about the 
order of preferences, no more. Such a function is unique up to strictly increasing 
transformations. That is if V.( ) and V z( ) are two ordinal value functions which 
both describe an individual's preferences then there exists a strictly increasing 
function <p( ), such that: V.() = <p ( V 2( ». 

A measurable value function goes beyond an ordinal value function in that it 
captures strength of preference. Measurable value functions are founded on value 
difference measurement. Suppose we know that A P B P C and that V( ) is a 
measurable value function, then ifV(A) - V(B) > V(B) - V(C), this tells us that the 
difference in preference between A and B is greater than the difference in preference 
between Band C. An alternative way of interpreting this is that the increase in 
preference obtained by moving from B to A (exchanging B for A), is greater than 
that obtained by moving from C to B (exchanging C for B). Such functions are 
unique up to positive affine transformations, that is: 

V.() = a + J3 V2(), where J3 > o. 
To be able to determine a measurable value function which describes an 

individual's preferences it is essential that the individual understands and is able to 
make judgements about the relative value of such value differences, or exchanges. 
This notion is fundamental to the use of value functions in multi-criteria decision 
support. 

12.2.2 Multi-attribute value theory 

The discussion so far has considered preferences only in a holistic sense, assuming 
that the decision maker is taking implicit account of all relevant factors in making 
preference judgements regarding two options. If the context and the elements of 
choice are simple, for example deciding which chocolate bar to have with afternoon 
tea, then this may be quite possible. However, as we mentioned in the introduction, 
the options may be a complex combination of actions and future scenarios. In such 
a situation the decision maker may try to make sense of the problem by breaking it 
down into component parts. The field of MCDA is a body of approaches which 
seek to support decision makers by making explicit, and modelling, the multi
faceted nature of preferences. Thus multi-attribute value theory, which is one 
approach to MCDA, extends the concept of value measurement to the development 
of models which explicitly incorporate multiple factors. 

An important stage in the development of a multi-attribute value function 
(MA VF) is clearly the process of determining the factors which are to be included 
in the model. This will be discussed in some detail later in the chapter, but for the 
moment we assume that n such factors have been identified and that option A is 
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described by the vector (aI, a2, ..... an), where ai describes the performance of option 
A with respect to factor, or attribute, i. 

The principle underlying MA VF modelling is one of dis-aggregation / synthesis, 
sometimes referred to as "divide and conquer". Instead of assessing preferences 
over the available choices on a holistic basis the decision maker's overall preference 
is synthesised from individual building blocks, where each building block describes 
preferences with respect to one of the fundamental factors which have been 
identified. That is, instead of directly assessing V(A), the decision maker first 
focuses on assessing vi(ai), the partial value function describing preferences with 
respect to factor i, for all factors. 

The simplest form of multi-attribute value function, and most widely used in 
practice, is the additive form: 

This is generally expressed as follows, 

The Wi are scaling factors which defme acceptable trade-offs between different 
factors. These are values on a ratio scale and thus are unique up to multiplication by 
a constant. The value of w/Wj defines the relative value of one unit measured on 
factor i in comparison with one unit on factor j. Note that this means that the values 
of the Wi depend on the units used in the definition of the individual factors, as will 
be seen later. 

This form of value function is appropriate if and only if the decision maker's 
preferences satisfy a condition known as mutual preferential independence. 
Given a set of attributes, X, then a subset Y of X, is preferentially independent of its 
complement, Z, if preferences relating to the attributes contained in the subset Y, do 
not depend on the level of attributes in the complementary set, Z. Mutual preference 
independence requires that every subset of attributes is preferentially independent of 
its complement. 

This notion of preferential independence is an important one that merits further 
illustration by an example. A marine engineer has been offered two jobs and in 
considering her choice between these two jobs has identified salary, holiday 
entitlement, location and job satisfaction as important factors. The two jobs are 
outlined in table 12.l. 

The numbers in brackets by location indicate an assessment of the attractiveness 
of the location to the decision maker on a 0 (low) to 10 (high) scale. 
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Table 12.1 Example to illustrate preferential independence 

Consideration of the conditions of preferential independence highlights that the 
extent to which the decision maker is willing to trade off an increase in the number 
of days holiday entitlement against a reduction in salary depends on the location. 
She would be willing to sacrifice more salary for a one day increase in holiday 
entitlement if the job is located in the Mediterranean than if it is located in the North 
of Scotland. This lack of preferential independence should not, however, lead to the 
immediate abandoning of an additive value function. It may be possible to redefme, 
or restructure the attributes in a way which achieves preferential independence. In 
this example, we might begin by probing a little more deeply into why location is 
important. From this it emerges that there are two reasons for its importance; firstly, 
proximity to Brussels where the engineer's family is based; secondly the climate 
and the extent to which this allows her to pursue her passion for windsurfing in her 
spare time. It is this latter aspect which relates to the length of holiday allowed. A 
possible way of overcoming the dependence between attributes may be to redefine 
location as distance from family and to redefine holiday as opportunity to windsurf 
(accepting that both jobs have a sufficient basic holiday allowance). 

It is common to structure the factors of relevance to the decision in the form or a 
value tree or criteria hierarchy, as illustrated in Fig. 12.1. Partial value functions 
and scaling factors are assessed with respect to bottom-level criteria (those on the 
right of the tree below) and progressively aggregated to reflect preferences at the 
intermediate levels and overall. 

Figure 12.1 Illustrative Value Tree 
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This concludes the brief and informal introduction to value theory. More 
detailed and formal expositions, in the context of MCDA, can be found in French 
[32] and in Keeney and Raiffa [41]. 

The remainder of the chapter focuses on the use of MA VT to underpin decision 
support in practice, although many issues which will be discussed are equally 
relevant to the use of other approaches to MCDA. 

12.3 USING MULTI-ATTRIBUTE VALUE THEORY 

12.3.1 Example applications 

The potential uses for MCDA in general, and for MA VT in particular, are wide 
ranging. Whenever a situation calls for a detailed evaluation of options or for a 
better understanding of preferences there is scope for the use of MA VT. It may be 
used, for example: by an individual to assess an aspect of their personal life, or to 
explore a personal perspective on an organisational issue; by a collaborative group 
to address an organisational issue: by a negotiative group seeking to identify a best 
compromise: or by a group of public policy makers seeking to identify a plan which 
best matches the needs and desires of society. The issue of concern may be a one
off choice between, or ranking of, a number of clearly identified options, for 
example, Butterworth [25] and Keeney [39] describe location decisions and Belton 
[8] discusses the selection of contractor and Buede [24] the design of a command 
and control system. On the other and it may be a recurrent decision about allocation 
of resources, or performance measurement, such as the case studies described by 
Islei et al [37] and Belton [11]. The reader is referred to special issues of the 
Journal of the Operational Research Society (April, 1982) and of Interfaces 
(November - December, 1991) for a range of applications. 

12.3.2 The process of analysis 

It is important to remember that the use of MA VT is part of the much wider MCDA 
process, which itself may be embedded in an even wider process of problem 
structuring and resolution, as illustrated in Fig. 12.2. It is not possible to appreciate 
the use of MA VT in practice without an awareness of this. Ever since its origins in 
the late 1960's concerns for the practical application of multi-attribute value theory 
(or, to be more precise, multi-attribute utility theory, MAUT) have influenced 
developments in the field. For example, concerns about difficulties of using the 
more complex MAUT models in practice led to the development of SMART 
[29,30], a simplified multi-attribute rating approach which now underpins much 
practical analysis. The field has benefited from the longstanding interests of 
psychologists, engineers, management scientists and mathematicians which has 
brought a continuing awareness of behavioural and social issues as well as 
underlying theory. For example, Decision Conferencing, described in more detail 
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later, recognises the importance of the social context in which analysis is conducted. 
In recent years these issues have become more widely embraced by the MCDM 
community as a whole as discussed Bouyssou et al. [20J and Korhonen & Wallenius 
[44]. 

Identification 
of the problem 
I issue , , 

I .. -
,---

Goals 

( 
Constraints 

"- Key issues 

Values - Problem 
structuring 

) 
, , 

Stakeholders 
.~ 

Model 
Building , 

'\ Specifying 

) 
Using the model 

r for evaluation 
Eliciting and choice " 

Defining values 

criteria __ ---'- Robustness 

r .,,= •• ,~ 

analysis 

Figure 12-2 The process of MCDA 

Sensitivity 
analysis 

Synthesis 
of information 

12.3.3 The nature of analyst / facilitator support 

The majority of, if not all, multicriteria analyses reported in the literature are 
supported by one, or more, analysts or facilitators. The tenn analyst tends to be 
used when there is a strong emphasis on that person working independently to gather 
information and expertise; a facilitator is more commonly recognised as someone 
who also brings the skills of managing group processes. The analyst / facilitator 
may be an external or an in-house consultant, but in either case is recognised for 
their expertise in the approach to modelling. 
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This section explores in more detail the different analytical styles which may 
adopted. In section 12.4 we discuss the possibility of unsupported, or D.I.Y (do it 
yourself), analysis [16]. 

Buede [22] drew the distinction between the practice of decision analysis, 
including MCDA, as "engineering science" or "clinical art". From the engineering 
science perspective the role of decision analysis is to develop a model which, as far 
as possible, is an objective representation of reality based incorporating expert 
judgements together with the decision maker's values. Watson and Buede [62] 
comment that "an autonomous decision maker, receptive and willing to participate 
in an analytic process" would be best served by this approach, which they refer to as 
the "modelling" strategy for the conduct of a decision analysis. In contrast, the 
clinical art approach is characterised by the embedding of decision analysis in a 
facilitated social process which seeks to achieve a shared understanding of the issue 
and commitment to an agreed action plan. These models tend to be much less 
mathematically complex, focusing on providing a framework for explication of the 
decision makers values rather than a valid representation of an external reality. 
Watson and Buede refer to this as the "conferencing" strategy; it is epitomised by 
the Decision Conferencing approach pioneered by Cameron Peterson and colleagues 
which is described in detail by Phillips [52]. Of course these are not mutually 
exclusive approaches; a particular intervention may incorporate elements of both 
modelling and conferencing. Either approach can be used to support a one-off 
decision or to develop a decision support system to support recurrent decision 
making / monitoring. 

Both approaches to MCDA continue to be practised to good effect. The RODOS 
project [33] and examples given by Von Winterfeldt [64] are recent and ongoing 
examples of the modelling approach. Quaddus et al. [54] and Belton et al. [13] 
describe applications in a decision conferencing environment. 

The conferencing strategy has a number of parallels with the SODA (Strategic 
Options Development and Analysis) approach developed by Eden [27]. Potential 
synergies between these (suggested by Watson and Buede [62], Belton [9], and 
Ackermann and Belton, [2] are now beginning to be exploited (Belton, Ackermann 
and Shepherd [13]) and will be discussed later in the chapter. 

12.4 AN EXAMPLE TO ILLUSTRATE THE USE OF MAVT 

12.4. 1 The problem 

It is impossible to give a good sense of what is involved in building a multi-attribute 
value model without an illustrative example. However, it must be remembered that 
what follows is just one way of working through the process of building and using a 
multi-attribute value model, supported by a particular software tool. There are many 
possible variations on the way of working and a number of different tools available; 
it is impossible to describe them all here. To illustrate the process I have chosen an 
issue which is not too complex, but it is a real decision which is faced by the 

PROBLEM STRUCTURING AND ANALYSIS 12-9 

This section explores in more detail the different analytical styles which may 
adopted. In section 12.4 we discuss the possibility of unsupported, or D.I.Y (do it 
yourself), analysis [16]. 

Buede [22] drew the distinction between the practice of decision analysis, 
including MCDA, as "engineering science" or "clinical art". From the engineering 
science perspective the role of decision analysis is to develop a model which, as far 
as possible, is an objective representation of reality based incorporating expert 
judgements together with the decision maker's values. Watson and Buede [62] 
comment that "an autonomous decision maker, receptive and willing to participate 
in an analytic process" would be best served by this approach, which they refer to as 
the "modelling" strategy for the conduct of a decision analysis. In contrast, the 
clinical art approach is characterised by the embedding of decision analysis in a 
facilitated social process which seeks to achieve a shared understanding of the issue 
and commitment to an agreed action plan. These models tend to be much less 
mathematically complex, focusing on providing a framework for explication of the 
decision makers values rather than a valid representation of an external reality. 
Watson and Buede refer to this as the "conferencing" strategy; it is epitomised by 
the Decision Conferencing approach pioneered by Cameron Peterson and colleagues 
which is described in detail by Phillips [52]. Of course these are not mutually 
exclusive approaches; a particular intervention may incorporate elements of both 
modelling and conferencing. Either approach can be used to support a one-off 
decision or to develop a decision support system to support recurrent decision 
making / monitoring. 

Both approaches to MCDA continue to be practised to good effect. The RODOS 
project [33] and examples given by Von Winterfeldt [64] are recent and ongoing 
examples of the modelling approach. Quaddus et al. [54] and Belton et al. [13] 
describe applications in a decision conferencing environment. 

The conferencing strategy has a number of parallels with the SODA (Strategic 
Options Development and Analysis) approach developed by Eden [27]. Potential 
synergies between these (suggested by Watson and Buede [62], Belton [9], and 
Ackermann and Belton, [2] are now beginning to be exploited (Belton, Ackermann 
and Shepherd [13]) and will be discussed later in the chapter. 

12.4 AN EXAMPLE TO ILLUSTRATE THE USE OF MAVT 

12.4. 1 The problem 

It is impossible to give a good sense of what is involved in building a multi-attribute 
value model without an illustrative example. However, it must be remembered that 
what follows is just one way of working through the process of building and using a 
multi-attribute value model, supported by a particular software tool. There are many 
possible variations on the way of working and a number of different tools available; 
it is impossible to describe them all here. To illustrate the process I have chosen an 
issue which is not too complex, but it is a real decision which is faced by the 



12- 10 PROBLEM STRUCTURING AND ANALYSIS 

International Society for MCDM every other year. The question is; where should 
the next Conference be? Imagine that a group of interested people have come 
together to resolve this issue. 

The problem is already well defined; it is accepted that there will be a 
Conference and the problem is to decide on the location. Thus there is no need, in 
this case, to begin with a broad problem structuring process and we can move 
directly to model building. The aim of the process is to develop a value tree which 
captures the decision makers values relating to the issue. The process thus 
encompasses both elicitation and structuring of values. The extent to which the two 
stages of the process are distinguished and made explicit will depend on the analyst. 

12.4.2 Problem structuring and model building 

It is well recognised by practising analysts that "good problem structuring is the key 
to successful analysis" (Von Winterfeldt and Edwards [63]). However, building a 
value tree is an art which is informed by experience; there is no "right" tree waiting 
to be constructed. It may be possible to represent an issue by a number of different 
value trees which differ in structure and/or level of detail (see, for example, Keeney 
and Raiffa [41] (p 422), Brownlow and Watson [21]). Useful guidance on building 
value trees can be found in Keeney and Raiffa [41], Buede [23], Watson and Buede 
[62] and in Von Winterfeldt and Edwards [63]. Keeney's book, "Value-focused 
Thinking" [40] also has much to contribute on the subject. 

Keeney [40] distinguishes between value-focused thinking and alternative
focused thinking. In the former, the process focuses on eliciting the decision makers 
values prior to identifying alternatives. In the latter, alternatives are identified at an 
early stage in the decision process and the focus is on distinguishing and choosing 
between the alternatives. As such, value-focused thinking is closer to problem 
structuring as described earlier. Keeney suggests that decision analysis should be 
driven by value-focused thinking as alternative focused thinking tends to " .. anchor 
the thought process, stifling creativity and innovation" (p48). However, in practice 
it is often the case that decision makers are faced with a situation in which well 
defined alternatives already exist and in such circumstances the alternatives can 
provide a useful stimulus for thinking about values (as Keeney himself describes -
p57). 

Von Winterfeldt and Edwards [63] and Buede [23] both describe two distinct 
approaches to the structuring of value trees, the top-down and bottom-up 
approaches. The top-down approach tends to be objective led, whilst the bottom-up 
approach is alternative led. It would be easy to equate the top-down approach with 
value-focused thinking and the bottom-up approach with alternative focused 
thinking. However, I think this is too simplistic - the alternative-led approach can be 
value-focused. It is better to view the two approaches as complementary ways of 
helping the decision makers think about the situation and to determine relevant 
values. It may be useful to build two separate value trees for a problem, one using 
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the bottom up approach, the other using top-down. Each approach may yield 
different insights, which can then be combined in an aggregated tree. 

The desirable characteristics of a value tree are identified by Keeney and Raiffa 
[41] as: 

• Complete - all important aspects of the problem are captured 

• Operational - it can be used with reasonable effort 

• Decomposable - allowing different parts of the tree to be analysed separately 

• Nonredundant - to avoid double counting of impacts 

• Minimal or concise - keeping the level of detail to the minimum required 

In "Value-focused Thinking" [40] Keeney adds to this list in defining desirable 
properties for attributes which should be shared by fundamental objectives: 

• Measurable - possible to specify in a precise way the degree to which objectives 
are achieved through the association of appropriate attributes 

• Understandable - to facilitate generation and communication of insights 

Clearly there is tension between the desire for completeness and conciseness -
exactly how much detail should be included? The notion of a requisite model 
introduced by Phillips [51] nicely captures the ideal balance. A requisite model is 
one which has generated adequate insight into the problem, one which captures the 
shared understanding of a decision making group. However, it is only through using 
the model that the extent to which it possesses these characteristics will emerge. 

We begin with an initial idea generation phase focusing on the question "What 
factors should be taken into account in deciding a conference venue?". Although we 
have not yet specified options for consideration in our example, it is likely that the 
decision makers will have in mind previous and potential conference venues. There 
are a number of group processes which might be adopted to facilitate this stage [49]. 
A nominal group approach which requires participants to work individually at first, 
thus capturing individual perspectives, and then to pool ideas with other members of 
the group, works well in practice. The use of post-its [1], [12], greatly facilitates 
this way of working. Individuals are asked to write down their ideas on the post-its 
(one idea per post-it), which are then collected on the wall (covered with flip-chart 
paper if necessary) for everyone to see. As participants review the ideas contributed 
by others they are encouraged to add to and expand on these. The facilitator, aided 
by the participants, should attempt to cluster similar ideas. 
Fig. 12.3 shows the output of the initial brainstorming session. The ideas have been 
clustered and each cluster given a label which captures the theme which links ideas. 
Note that many of the ideas capture similar or overlapping concepts (for example, 
"don't go back to the same place" and "not been there before"), which is to be 
expected if several people are involved in generating the ideas. Keeping hold 
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of all of these ideas at this stage increases the richness of the representation and 
increases ownership by maintaining the participants' own language. 

The next stage is of analysis is to build a value tree which captures the issues 
which have emerged from the idea generation process. It is important to remember, 
as discussed above, that the value tree should reflect the decision makers' values, or 
objectives, rather than simply being a means of discriminating between options. In 
our example the post-its have been arranged so that the higher level objectives are 
positioned closer to the central question and these form the top level of criteria in 
the initial value tree, which is displayed in Fig. 12.4. 

Figure 12.4 - Value tree for Conference Venue Problem 

In practice it is unlikely that the initial value tree will "survive" the whole 
analysis. As the analysis proceeds it may emerge that certain criteria do not satisfy 
the preferential independence requirement and restructuring is required. Certain 
aspects may have been elaborated in too much detail, others in not enough detail. 
As indicated in Fig. 12.2 the whole process is an iterative one. 

12.4.3 Eliciting values 

12.4.3.1 Partial value functions. Once the value tree is structured and 
alternatives to be evaluated have been determined, the next stage is to assess the 
performance of each of the alternatives against those criteria which define the 
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bottom level of the tree. This is the process of determining the values Vj( ), the 
partial value functions, as indicated in section 12.2.2. Remember that the partial 
value functions define an interval scale of measurement, that is, a scale which 
focuses on the difference between points (the ratio of values has no meaning). To 
construct a scale it is necessary to defme two reference points; these are often taken to 
be the bottom and top of the scale and assigned values of 0 and 100 respectively. For 
a local scale these points are defmed by reference to the alternatives under 
consideration, assigning a score of 100 to the alternative which performs best on a 
particular criterion and 0 to the one which does least well. A global scale is defmed by 
reference to the wider set of possibilities. The end points of a global scale are defmed 
by the ideal and the worst conceivable performance on the particular criterion, or by 
the best and worst performance which could realistically occur. The defmition of a 
global scale requires more work than a local scale. However, it has the advantages that 
it is more general and that it can be defmed before consideration of specific 
alternatives. 

Once the reference points have been determined consideration must be given to 
how intermediate scores are to be assessed. This can be done in the following three 
ways: 

• Definition of a value function: relating value to performance against a 
measurable attribute reflecting the criterion of interest 

• Construction of a qualitative value scale: against which the performance of 
alternatives can be assessed by reference to descriptive pointers 

• Direct rating of the alternatives: no attempt is made to define a scale which 
characterises performance independently of the alternatives being evaluated 

12.4.3.2 Defining a value function. The first step in defining a value function is 
to identify a measurable attribute scale which is closely related to the decision 
makers values. If this is not possible then it will be necessary to construct a value 
scale or directly assess the performance of alternatives, as described below. The 
value function reflects the decision makers preferences for different levels of 
achievement on the measurable scale. There are many ways of assessing value 
functions and the reader is referred to Keeney and Raiffa [41] or Watson and Buede 
[62] for a detailed exposition of some of the methods. A function may assessed 
directly, usually utilising a visual representation or by indirect questioning, utilising, 
for example, the bisection method. 

Example 12.1 
To illustrate the definition of a value function consider the criterion "strength of 
local MCDA community". This could be measured simply by the number of local 
persons active in the MCDA community, or we could attempt also to take account of 
seniority and experience. However, for purposes of illustration let us keep things 
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simple and measure strength by the number of members of the International 
Society. The minimum size is 1, as it would be considered unrealistic to organise a 
conference where there is no local representation. The maximum is less clearly 
defmed, but 50 might be possible if there were a number of active research groups in 
the same city. 

Fig. 12.5 shows a possible value function for the size of the local MCDA 
community. A value of 0 corresponds to a local community of 1 person, a value of 
100 to a community of 50 people. As the graph illustrates, an increase from 1 to 5 
people generates a significant increase in value and a further increase from 5 to 10 
increases the assessment of value to a level of80 . 

• Strength of local MCDA community: Value Fun .. . !I 
Impact on Good Organisation 

100 , 
./ 

l 
I 

50 

I 
! 
f 

II 

00 25 50 Number of people 

Figure 12.5 Partial value function for "Strength oflocal MCDA community" 

Von Winterfeldt and Edwards [63] argue that if a problem has been well 
structured all value functions should be regular in form (i.e. no discontinuities) and 
further, that they should be linear or close to linear. However, Stewart [62] 
illustrates through experimental simulations that the results of analyses can be 
sensitive to such assumptions, hence care should be taken not to over-simplify a 
problem by inappropriate use of linear value functions. Non-monotonic value 
functions are often indicative of multiple underlying values and the analyst should 
consider restructuring a value tree to replace such by one or more monotonic 
functions. 

12.4.3.3 Constructing a Qualitative Value Scale. If it is not possible to find a 
measurable attribute which captures a criterion an alternative approach is to build 
an appropriate qualitative scale. Examples of such scales in regular use are the well 
known Beaufort scale for measuring the strength of wind and the Richter scale for 
measuring the force of earthquakes. Points on these two scales are defined 
descriptively; an alternative approach is to associate specific alternatives, with 
which the decision makers are familiar, with points on the scale. The descriptors, 
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sensitive to such assumptions, hence care should be taken not to over-simplify a 
problem by inappropriate use of linear value functions. Non-monotonic value 
functions are often indicative of multiple underlying values and the analyst should 
consider restructuring a value tree to replace such by one or more monotonic 
functions. 

12.4.3.3 Constructing a Qualitative Value Scale. If it is not possible to find a 
measurable attribute which captures a criterion an alternative approach is to build 
an appropriate qualitative scale. Examples of such scales in regular use are the well 
known Beaufort scale for measuring the strength of wind and the Richter scale for 
measuring the force of earthquakes. Points on these two scales are defined 
descriptively; an alternative approach is to associate specific alternatives, with 
which the decision makers are familiar, with points on the scale. The descriptors, 
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which correspond to a measurable attribute, must then be mapped onto a scale 
derming the decision maker's values. In constructing the scale the analyst and 
decision makers may start from the scale and develop descriptors, or word models, 
associated with specified value levels. Alternatively, the starting point may be a set 
of definitions, familiar to the decision makers, which are mapped on to points on the 
value scale. This may be done directly, or using a pairwise comparison procedure 
such as MACBETH [4]. A constructed scale should have the following attributes: 

• Operational: allows decision makers to rate alternatives not used in the 
definition of the scale. 

• Reliable: two independent ratings of an alternative should lead to the same 
evaluation. 

• Value relevant: relates to the decision makers' objectives. 

• Justifiable: an independent observer could be convinced that the scale is 
reasonable. 

A constructed scale for accommodation facilities could be as detailed in Table 12.2. 

Table 12.2 A constructed scale for the attribute "accommodation facilities" 

Scale point Value Descriptor 
Poor 0 No choice, poor quality student accommodation located 

at a distance from the conference site 
25 A limited choice (e.g. basic student residence or high 

quality hotel) but not conveniently located for the 
conference site or city 

Middling 50 A range of types and quality of accommodation, but 
scattered around the city and somewhat distant from the 
conference site 

75 A wide range of types and standard of accommodation, 
but scattered around the city and not all conveniently 
located 

Excellent 100 Wide range of types and standards of accommodation 
(basic student residences, executive student residences, 
budget hotels, high quality hotels) located close together 
within easy reach of the conference site and social 
amenities (restaurants, bars, sport) 

12.4.3.4 Direct Rating of Alternatives. Direct rating can be viewed as the 
construction of a value scale, but defining only the two reference points. A local or 
a global scale, as described above, may be used, the former creating minimal work 
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for the decision makers. Alternatives are positioned directly on the scale to reflect 
their performance relative to the reference points. Even though no attempt is made 
to relate performance to a measurable scale, the positioning of alternatives can 
generate extensive discussion, yielding rich information on the decision makers 
values which should, ideally, be captured for future reference. 

A process of pairwise comparisons is implicit in the direct rating approach - for 
example, in evaluating a particular alternative it is necessary to consider whether it 
should be positioned above, or below other alternatives. This process can be 
formalised in a manner which requires the decision makers to systematically 
consider each pair of alternatives. The pairwise comparison approach is one of the 
cornerstones of the Analytic Hierarchy Process (AHP) developed by Saaty [59]. 
However, the AHP treats responses as ratio judgements of preferences, which is not 
consistent with the value function approach. The underlying mathematics is easily 
modifiable to be consistent with difference measurement [31]. The MACBETH 
approach developed by Bana e Costa and Vansnick [3],[4], also based on pairwise 
comparisons, can be used to derive direct ratings. 

One of the drawbacks of pairwise comparison methods is the large number of 
judgements required of the decision maker (N*(N-1)/2) for each criterion, where N 
is the number of alternatives. Nevertheless, the approach is a powerful one which 
can be effectively utilised if decision makers find the direct rating procedure 
difficult. 

A scaling procedure must be defined for each bottom-level criterion. This is then 
employed to rate each of the alternative locations under consideration. It is beyond 
the scope of this chapter to consider each of the criteria in detail and to use the 
model to assess a number of real venues. In order to illustrate the rest of the process 
four hypothetical venues, based on the plausible scenarios outlined below, have 
been assessed. 

• Option A: A North American industrial city, with a good university and strong 
MCDA support. 

• Option B: An Australasian University city with good conference facilities and 
an active, but not large MCDA community 

• Option C: An attractive and historic European city. One MCDA person locally 
working in a University with few conference facilities 

• Option D: An exotic island in a remote location. A small local MCDA group. 
Good accommodation options and local facilities but poor conference facilities. 

Fig. 12.6 shows the assessment of each of the alternatives against each of the 
bottom-level criteria in five profile graphs. It is clear from these graphs that all four 
locations have strengths and weaknesses. There is no dominating location, neither is 
any of the locations dominated by another. 
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Figure 12.6 Assessment of alternatives against bottom-level criteria 

We now consider the elicitation of scaling factors, or criteria weights. As these 
values are dependent on the scales used to assess the partial value functions, it is not 
possible to assess the weights until the partial value function scales have been 
defmed. 

12.4.3.5 Scaling factors. As we have seen already, the scaling factors, Wi, defme 
acceptable trade-offs to the decision maker. How much would they be willing to 
give up on one factor in order to improve performance on another factor? There are 
many questioning procedures which seek to elicit this information. One which is 
widely used is the swing weights procedure. 

The "swing" being considered is a swing from the worst value to the best value 
on each criterion. If the value tree is small, then the decision maker may be asked to 
consider all bottom-level criteria simultaneously and to assess which swing gives the 
greatest increase in overall value; this criterion will have the highest weight. The 
process is repeated on the remaining set of criteria, and so on, until the order of 
benefit resulting from a swing from worst to best on each criterion has been 
determined, thereby defining a ranking of the criteria weights. To assign values to 
the weights the decision maker must assess the relative value of the swings. For 
example, if a swing from worst to best on the most highly weighted criterion is 
assigned a value of 100, what is the relative value of a swing from worst to best on 
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the second ranked criterion? Note that it is not possible to assign swing weights 
until the scales for each criterion have been defmed. 

Fig. 12.7 shows the relative magnitude of swing weights assigned to the bottom
level criteria in the example value tree. The strength of the local MCDA community 
is judged to have the highest weight and other criteria are assessed relative to that. 

The assessment of weights is also implicitly a process of pairwise comparison. 
This may be formalised by specifying a reference criterion against which all others 
are compared (requiring the minimal number of comparisons), or each criterion may 
be compared with every other one (requiring N (N-l)12 comparisons) as in the AHP. 
For larger value trees it is easier fIrst to consider families of criteria (i.e. those 
sharing the same parent criterion) and to compare across families. 

Decision makers are generally very comfortable working with visual analogue 
scales such as the ones displayed in Fig. 12.6 and Fig. 12.7. These provide a means 
for communicating a good sense of the magnitude of judgements whilst removing 
the need for numerical precision. However, it is important that this degree of 
imprecision is not forgotten when information is aggregated. 

The weights implied by the visual representation in Fig. 12.7 are translated to 
numerical values, normalised to sum to 1, as presented in Fig. 12.8. The fIgures in 
brackets are the "within family" weights normalised to sum to 1. 
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Figure 12.7 Swing weights for the Conference Venue value tree 
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Figure 12.8 Numerical weights for the Conference Venue value tree 

12.4.4 Using the information elicited 

The elicited information can now be synthesised to give an overall value, V(A), for 
each of the alternatives, together with evaluations at intermediate levels of the value 
tree. Fig. 12.9 shows, on the right of the picture, the aggregation of values to the 
level of "Attractive venue" and on the left, the aggregation of values to the top of the 
value tree. It can be seen that, in terms of attractiveness of venue, locations Band D 
are preferred, followed by C and then A. Overall, B is slightly preferred to A with C 
and D rated some way behind. The overall profile graph emphasises the preference 
for A or B in most regards. 

However, this should not be regarded as the end of the analysis. It may be that 
the result of this initial analysis is in conflict with the decision makers intuition. If 
this is the case, neither the model nor the intuitive preference should be discarded. 
Instead, the model should be further explored and intuition questioned with a view 
to better understanding the conflict. Has an important factor been omitted from the 
model? Should the specification of criteria weights be revisited? Or is the decision 
maker persuaded to change their view? 

Even if there is no conflict between the model output and the decision makers 
intuition the robustness of the preferred option should be explored through 
sensitivity analysis. It is generally recognised (Rios Insua and French [57], Belton 
[9]) that sensitivity analysis is a very important part of any analysis. It enables the 
users to check out the implications of imprecise or uncertain judgements and to 
explore the implications of differing priorities. Furthermore, if the sensitivity 
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analysis is carried out interactively it serves as a vehicle for the decision makers to 
validate the underlying model, thereby increasing confidence and ownership. 
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Figure 12.9 Aggregating the elicited information 

Experience of the author in the use of MAVT in practice [8] prompted research 
into ways of quickly and effectively communicating the output of multicriteria 
sensitivity analyses. This led the author to develop V-I-S-A, a multi-criteria 
decision support system which supports visual interactive sensitivity analysis [19]. 
Motivated by developments in Visual Interactive Modelling [7] and inspired by 
Korhonen's implementation of visual interactive goal programming, the Pareto Race 
[43], V-I-SeA allows the user to explore the robustness of options through easy-to
conduct interactive sensitivity analysis. By dragging bars representing important 
parameters of the model, for example the criteria weights, the user can immediately 
see the implication of that change for, for example, the overall evaluation of the 
options. For example, increasing the weight given to the need for good 
organisational support and low costs would shift the balance of preference from 
location B to A in the above example, as seen in Fig. 12.10. 

V-I-SeA allows the user (facilitator, analyst or decision maker) to carry out 
multi-dimensional sensitivity analysis in an exploratory manner - making ad-hoc 
changes to parameters of the model and immediately seeing the effect on the 
evaluation of alternatives. This is a valuable tool, but as it is completely user-driven 
it does not guarantee a systematic and comprehensive investigation: current work is 
exploring the provision of more systematic support for sensitivity analysis. 

PROBLEM STRUCTURING AND ANALYSIS 12-21 

analysis is carried out interactively it serves as a vehicle for the decision makers to 
validate the underlying model, thereby increasing confidence and ownership. 

~ Conr.,one. venue. P,oI,l . .. r.ll:j I 
100 

so 

Cost. Altroctlve 
Good Promoclng 

o 

~ Conlerence venue Wetghl 111[0] El 
1.0 

0.0 11-
0.5 

Altractive 
Good Promoclng 

~ AUra.chve v~nue "r.l £:i I 

i ~ Athocbvc venue. SCOfes ... r.1 [1' 

• A c 
B 

1.0 

0.5 

0.0 
AtlJoctlY=. 

o 

AtlrllldNene.ss 

Figure 12.9 Aggregating the elicited information 

Experience of the author in the use of MAVT in practice [8] prompted research 
into ways of quickly and effectively communicating the output of multicriteria 
sensitivity analyses. This led the author to develop V-I-S-A, a multi-criteria 
decision support system which supports visual interactive sensitivity analysis [19]. 
Motivated by developments in Visual Interactive Modelling [7] and inspired by 
Korhonen's implementation of visual interactive goal programming, the Pareto Race 
[43], V-I-SeA allows the user to explore the robustness of options through easy-to
conduct interactive sensitivity analysis. By dragging bars representing important 
parameters of the model, for example the criteria weights, the user can immediately 
see the implication of that change for, for example, the overall evaluation of the 
options. For example, increasing the weight given to the need for good 
organisational support and low costs would shift the balance of preference from 
location B to A in the above example, as seen in Fig. 12.10. 

V-I-SeA allows the user (facilitator, analyst or decision maker) to carry out 
multi-dimensional sensitivity analysis in an exploratory manner - making ad-hoc 
changes to parameters of the model and immediately seeing the effect on the 
evaluation of alternatives. This is a valuable tool, but as it is completely user-driven 
it does not guarantee a systematic and comprehensive investigation: current work is 
exploring the provision of more systematic support for sensitivity analysis. 



12- 22 PROBLEM STRUCTURING AND ANALYSIS 

100 

a D. 
A C 

B 0 

_ Cl x 

1.0 

05 

0.0 .0 __ 
Costs Attractive 

Good Promotng 

Figure 12.10 Visual interactive sensitivity analysis 

12.5 WHAT'S NEW? 

The theory supporting MA VF analysis has been in place since the late 1960's [55] 
and many accounts of the application of MA VT in practical decision making began 
to emerge in the 1970's, so you may well ask what place this chapter has in a book 
on advances in multiple criteria decision making. Although the underlying theory is 
substantially unchanged, the way in which it has been applied over the past 30 years 
has seen some changes. Many of these have been facilitated by rapidly developing 
technology, others have been driven by awareness of the importance of and 
increased attention to problem structuring, and some are a consequence of 
organisational factors. 

12.5.1 Problem structuring for MCDA 

As commented earlier, good problem structuring is the key to effective analysis. 
The shift in emphasis from modelling to problem structuring is reflected in the 
comparison between Keeney and Raiffa's, "Decisions with Multiple Objectives", 
published in 1976 [41], and "Value-focused Thinking" published by Keeney in 1992 
[40]. In this respect the MCDA field can learn much from developments in so
called "soft operational research", or problem structuring methods, which has gained 
prominence in the UK [58]. The conferencing strategy has a number of parallels 
with the SODA (Strategic Options Development and Analysis) approach developed 
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by Eden [27] and potential synergies between these are now beginning to be 
exploited (Belton, Ackermann and Shepherd [13], Bana e Costa et al [5],[6]). In 
connnon with decision conferencing SODA is a process which uses modelling as 
part of a managed social process to achieve shared understanding. Cognitive 
mapping [26], which is a particular form of representing individual 'construct 
systems' based upon Kelly's Personal Construct Theory [42], is the underlying 
modelling approach. A cognitive map aims to represent a problem/issue as the 
decision maker (participant) perceives it, in the form of a means-ends network-like 
structure. Individual cognitive maps may be generated in one-to-one interviews and 
later merged to form a composite group map capturing all individuals perspectives. 
Alternatively a group map may be generated directly in a structured idea generation 
session. The shared map is used to facilitate conversation and discussion, leading to 
a shared understanding of the issue. The process is supported by the use of the 
Decision Explorer software (formerly known as COPE). 

Ackermann and Belton [2] discuss the use of COPE and V-I-SeA for managing 
corporate knowledge, highlighting the parallels between the SODA and MCDA 
processes, and in Belton, Ackermann and Shepherd [13] they describe the 
integration of these two approaches to explore the development and implementation 
of strategy for the Supplies and Connnercial Services Division of a hospital trust. 

The embedding of MCDA within the broader framework for problem structuring 
and resolution provides a powerful vehicle for integrated decision support. The use 
of mapping allows the capture of a rich representation of the issue, which not only 
supports the decision making process but also provides for a longer term 
organisational memory. However, a multi-methodological approach raises a number 
of issues. Firstly, there are philosophical issues about the theoretical compatibility 
of approaches. Secondly, there are practical issues about the skills required of the 
analyst/facilitator. These are addressed by Belton, Ackermann and Shepherd [13] in 
the context of that particular intervention; and many of the issues are addressed in a 
general sense in the compilation of papers entitle "Multi-methodology" edited by 
Mingers and Gill [48]. 

12.5.2 Technology 

Technological factors have influenced the way in which support is provided and the 
nature of support. 

12.5.2.1 The way in which support is provided. The advent of mini-computers 
in the 1970's followed rapidly by the microcomputer in the 1980's enabled analysis 
to move out of the backroom and into the boardroom [10],[56]. This had a 
substantial impact on the practice of MCDA as evidenced by the introduction of the 
decision conferencing approach at DDE [45] in Washington, USA, followed by the 
development of the PODs at ICL and at London School of Economics in the UK 
[52]. The POD is a customised room, designed to provide the appropriate 
environment for a 2 day Decision Conference. The design of the room pays explicit 
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attention to the need to manage group dynamics as well as the need to provide 
appropriate, low key, technological support. With the introduction of portable 
microcomputers and display facilities an increased flexibility in working became 
possible - but it seemed that the more technology could provide, the more decision 
making groups demanded in terms of feedback which could be instantaneously 
conveyed to groups of decision makers, as described by Belton [8]. Thus, the way 
in which support could be provided prompted developments in the nature of the 
support. As described above, V-I-SeA was developed as a consequence of these 
experiences. Early work with V-I-SeA indicated that decision makers responded 
positively to the visual interactive implementation of the model when encouraged to 
"play", resulting in a better understanding of and increased confidence in the model 
[11]. 

12.5.2.2 Computer networked support. The advent of local area networks 
created new opportunities for group working. Pioneering systems such as Group 
Systems developed by Nunamaker et al. [50] focused on the provision of tools to 
enhance the creativity and productivity of groups in a workshop setting. Although 
the Group Systems software incorporates facilities for multicriteria evaluation, the 
procedures appear to have been developed in an ad hoc way rather than building on 
expertise in multicriteria modelling. The use of such systems was limited initially 
by the availability of suitable facilities - a laboratory with the requisite number of 
networked computers. The development of notebook computers and networking 
capabilities allowed a more flexible way of working - firstly, a customised 
laboratory was no longer required and secondly, the facilities were more portable. 
In very recent years we have seen the development of specialised group systems for 
multicriteria decision support (Group V-I-SeA and HIPRE are examples of two 
which are based on MA VT; Group Expert Choice, based on the AHP, and Group 
Promethee are two other examples). These systems allow decision makers 
simultaneously to input their individual values to a shared model; the information is 
then synthesised and aggregated to give a "group decision" or used as a basis for 
discussion aimed at achieving a consensus. Fig. 12.11 is a screenshot from Group 
V-I-SeA showing three "group views" in which each user is represented by a 
coloured dot (it may not be appropriate to distinguish users in this way, in which 
case all the dots are the same colour). The top left chart shows the overall 
evaluations of the four locations by each user; although A and B are preferred by all 
users, there is not a unanimous preference for one of these two. Looking at the 
bottom left chart showing the distribution of criteria weights reveals that the yellow 
user is less concerned about costs. The chart on the right looks in more detail at the 
evaluation of location A. 

However, whilst group multicriteria decision support systems open up 
opportunities for new ways of working, this also generates many questions (see 
Belton and Pictet [17], Belton and Elder [14], Hlinililliinen and PoyhOnen [36]). 
What is the best way of running such workshops - for example, how can manual, 
single-user and multi-user decision support technologies be best integrated? What 
aspects of a model should be common to all participants in a workshop and what 
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aspects are individual? How does the facilitator make sense of the mass of 
information generated and best use this to manage the group process? These 
questions will only be answered by action research to investigate the use of this new 
technology in practice. 

The rapid development of the internet and worldwide web is pushing these 
developments even further. It is now possible for groups to work together to build 
and use multicriteria models over wide area networks, permitting dispersed and 
asynchronous MCDSS (see, for example, Web-HIPRE). This way of working 
opens up new issues of facilitation and user support which are the subject of further 
current research (Belton and Hodgkin,[l6]). 
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12.5.2.3 Nature ofsupport. The widespread introduction of Windows technology 
from the early 1990's greatly facilitated the development and implementation of 
visual interactive interfaces and there are now a number of software tools 
incorporating such features which facilitate multi-attribute value analysis (for 
example, HiView, Logical Decisions, V-I-S-A). 

Technological devel()pments continue apace, continually providing new 
opportunities and challenges for the MCDA practitioner and researcher, for 
example: 

Multimedia. The integration of materials which not so long ago were conceived of 
as distinct media, in a hyper-media environment is now common place. Graphics, 
animations, video, sound, text, interactive computer programmes, etc., are 
incorporated in multimedia teaching materials, multimedia advertising, multimedia 
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publishing, . .. [34]. In what way can multimedia enhance multicriteria analysis? A 
few suggestions follow. 

As discussed earlier, the process of problem structuring is a divergent one 
generating a wealth of information about the issue being investigated and about the 
values of the decision makers and other stakeholders. Much of this richness is set 
aside, if not lost completely, in the model building phase. A value tree is a very 
sparse representation of a problem; complex objectives and detailed alternatives or 
strategies may be captured by one word descriptors. We have already discussed the 
use of cognitive maps to act as a more detailed organisational memory of an 
analysis; multimedia can also playa role here. If the options are physical entities, 
then a visual record can provide a richer representation than a written descriptor. 
This may be a simple photograph or a video clip, or it may be a virtual reality 
representation of, for example, potential building designs. Fig. 12.12 shows a 
V-I-SeA model for the exploration of alternative sites for new office premises 
focusing on the differences between two possible sites. 

If a model is to be used as part of an organisational memory, or to demonstrate 
and justify the basis for a decision to other parties, then audio could be used to 
capture and record the rationale for particular judgements. 
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Figure 12.12 Multimedia in MCDA 

Linking to other analytical tools. The ability to easily and dynamically link 
software tools opens up exciting opportunities for the integration of multicriteria 
analysis with other analytical approaches. It has been suggested elsewhere [53] that 
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if the field of MCDA is to achieve its full potential, then it must seek ways of 
achieving such integration - as the "classical" scenario of MCDA more often arises 
out of other investigations, than as a distinctly identifiable problem. 

One such area of activity is the integration of Geographical Information Systems 
and MCDA as evidenced by the GIMDA (Geographic Information and Multicriteria 
Decision Analysis) group. Applications in the fields of land use planning, transport 
planning and environmental management particularly lend themselves to the 
integration of these two approaches. 

Another potentially fruitful area for collaborative work is in the integration of 
simulation and MCDA. A number of surveys have indicated [47] that simulation is 
the most widely applied OR technique; it is used extensively in manufacturing and 
increasingly so to investigate operations in the public sector. Although such models 
invariably gather and report performance of the simulated system on multiple 
dimensions, simulation software does not generally extend its analytical capabilities 
to incorporate formal multicriteria analysis. This gap was bridged by Belton and 
Elder [15] who linked Simul8, a visual interactive system for discrete simulation, 
with V-I-SeA. The link is configured so that performance measures from a run of 
the simulation, defining a new option in the choice set, are automatically passed 
across to the multicriteria model where they are incorporated with other relevant 
information. Other examples of the integration of simulation are: Spengler and 
Penkuhn [60] describing a DSS which combines a flowsheet-based simulation with 
multicriteria analysis: work by Macharis [46] which incorporates a multicriteria 
choice rule within a system dynamics analysis of transport policy: and a study by 
Gravel et al [35] using multicriteria analysis to evaluate production plans developed 
using simulation. 

12.5.3 Organisational issues 

12.5.3.1 Nature of current applications. Applications ofMAVT, at least those 
which are reported in the literature, tend to be focused in the public sector or large 
companies. Possible factors to explain this are: 

- Awareness and access to expertise - large organisations are likely to have in
house consultants with the appropriate knowledge and skills 

- Access to appropriate resources / facilities (decision support technology and 
facilitators) 

- Need to be accountable to the public 

- Need to take explicit account of multiple stakeholder views 

- Enormity of the decisions merits detailed evaluation 
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Is there any evidence that MA VT, or MCDA in general, is becoming more widely 
used? It is interesting to note developments in two directions, which will be referred 
to as "D.I.Y." (do-it-yourself) analysis and "packaged" analysis. 

12.5.3.2 "D.I.Y" MCDA. There is little to write about D.I.Y MCDA in practice 
as there is little evidence that any formal analysis takes place in this way. However, 
I believe that it is an area which deserves attention, for two main reasons. The first 
reason is a pool of middle and senior managers which is becoming increasingly 
educated in formal methods of management through MBA programmes. These 
managers are more technologically aware and have had greater exposure to 
modelling than their predecessors, two factors which should make them more 
receptive to the use of multicriteria analysis. This predisposition may make them 
more inclined to use MCDA without the support of a trained analyst/facilitator. 

However, the notion of D.I.Y MCDA opens up new and interesting challenges, 
firstly in the education of potential users and secondly in the development of 
appropriate softwares. Edwards, Finlay and Wilson [28] discuss the general benefits 
of and difficulties in providing D.I.Y decision support and Belton and Hodgkin [16] 
focus on MCDA specific issues in an evaluation of the need and potential for 
intelligent decision support for D.I.Y users. 

12.5.3.3 Packaged MCDA. A number of currently popular management 
methodologies, for example, Kaplan and Norton's Balanced Scorecard [38] and the 
EFQM (European Federation for Quality Management) model are founded on ad
hoc multicriteria analyses. In addition to these popular methodologies there are 
many "institutionalised" decision processes which require analysis of multiple 
factors. For example, the "Option Appraisal" process in the UK Health Service 
requires that before any capital project can be approved a full analysis of the costs 
and benefits of alternative proposals is conducted. COEIA (Combined Operational 
Effectiveness and Investment Analysis) is a similar process which underlies 
procurement decisions in the UK Ministry of Defence. There are many similar 
examples in other countries. These procedures are not themselves formal 
multicriteria analyses, but they point to the awareness of the need to explicitly model 
multiple factors and the existence of informal MCDA in organisations. This can 
open up substantial opportunities for supported [18] and for the development of 
tools to be used in an unsupported environment. 

12.6 SUMMARY 

This chapter has sought to describe the state of the art in the use of MA VT in 
practice and to highlight current developments and research which can be expected 
to have an impact on the nature and scope of applications in the near future. If 
MCDA is to achieve its full potential as a tool for decision support then it is my 
belief that the central MCDA community nrust take steps to encourage its wider use 
by ORIMS practitioners and more generally by practising managers. The current 
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mix of technological and organisational opportunities combine to facilitate this 
growth; but it is a challenge which the MCDA community must actively pursue. 
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The aim of the chapter is to expose its readers to some basic and generic ideas associated with 
interior algorithms and develop approaches for using these algorithms to address MOLP 
problems. In doing so, we discuss basic MOLP questions associated with interior algorithms, 
develop some specific interior MOLP approaches and illustrated them with examples. 

13.1 Introduction 

For many years the field of linear programming used the simplex algorithm, 
developed by G.B. Dantzig in 1947, as its major solution approach. With the 
introduction in 1984 of a new algorithm by N.K. Karmarkar, this situation has 
changed dramatically [10]. This algorithm had the desired property of polynomial
time convergence, had claims for great speed advantage over the simplex algorithm 
and, unlike the ellipsoid algorithm (which preceded it with the property of 
polynomial-time convergence), was practical to implement numericaIly. The class of 
algorithms which ensued Karmarkar's algorithm in subsequent years is generally 
referred to today as interior-point linear programming algorithms. This class of 
algorithms includes today a number of algorithmic variants (see, e.g., [1], [16]). 
Research activity in this new class of algorithms became so intensive that over 1500 
papers were counted as of early 1990s. 
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13-2 Interior MOLP Algorithms 

The difference between the class of interior algorithms and the simplex 
algorithm lies in their respective progress toward the optimal solution of the linear 
programming problem. The simplex algorithm makes its progress by moving the 
current solution point on the exterior of the constraint polytope and along its vertices 
until optimality is reached. In contrast, an interior algorithm makes its progress by 
moving the current solution point through the interior of the polytope. 

Extensive numerical testing of these algorithms against sophisticated 
implementations of the simplex algorithm have caused the initial skepticism which 
greeted the introduction of this new class of algorithms to subside. It is now the 
general consensus that interior algorithms dominate the simplex algorithm when 
solving large-scale linear programming problems. Specifically, it is generally agreed 
today that for small to medium-sized problems, the simplex algorithm will have an 
edge over the interior algorithm, while the situation reverses when one moves to 
large-scale problems. Exact delineation of the boundary where one moves from one 
class of problems to another is not an easy task and depends on factors such as 
number of variables, density of the constraints matrix as well as its structure. In 
addition, it is the general consensus today that this new class does not replace the 
simplex algorithm but rather complements it and enhances solution capabilities of 
linear programming problems. 

Currently, most interactive Multiple Objective Linear Programming (MOLP) 
procedures are simplex-based as they use the simplex algorithm and its pivoting 
mechanism to move from one facet to another one on the efficient surface (see, e.g., 
[8,13,14,19]). The pivoting operation may not pose any special computational 
difficulty, but the number of required operations increases rapidly when the size of 
the problem increases, making a simplex-based MOLP algorithm untenable for 
large-scale problems. These observations motivate the need to explore alternative 
search procedures for interactive algorithms and lead to the class of interior MOLP 
algorithms illustrated in this chapter. While the size of the MOLP problem has 
provided the initial motivation in this direction, it has been found that the use of 
interior algorithms allows new ways of interaction with a Decision Maker (DM) 
during the preference elicitation phase inherent with interactive MOLP algorithms. 

First attempts at using interior-point single objective algorithms to MOLP 
problems were reported in [2-5]. These approaches used two different interior 
variants to generate an interior sequence of iterates. Recently, the use of the 
achievement scalarizing function has resulted in yet another interior approach for 
MOLP problems. This function was first proposed by Wierzbicki [17,18] in his 
reference point approach and led Korhonen and Laakso [II] to show how to use it in 
an MOLP context and how to explore the efficient frontier [12]. The combination of 
an interior algorithm with the achievement scalarizing function was recently 
demonstrated as well [6,7]. 

The aim of the chapter, therefore, is to present a modest state-of-the-art of 
interior-point algorithms as they pertain to MOLP problems. Specifically, we intend 
to present basic and generic ideas associated with interior algorithms and develop 
some approaches for using these algorithms in an MOLP context. In doing so, we 
discuss some basic MOLP questions associated with interior algorithms and develop 
specific interior MOLP approaches. These interior MOLP algorithms are then 
illustrated by simple examples. This chapter, therefore, is arranged as follows. In 
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section 2 we provide a brief review of the affine-scaling primal algorithm which is 
one simple variant of an interior linear programming algorithm. We use this 
algorithm to generate the interior solution trajectory for our MOLP algorithms. 
Section 3 initiates the departure from single objective linear programming problems 
and into MOLP problems. Section 4 develops our first interior MOLP algorithm that 
is based on performing convex combinations of individual step direction vectors 
based on local preference assessment. Section 6 reviews the fundamentals of 
achievement scalarizing functions and illustrates its use in developing an interior 
MOLP algorithm. Section 7 provides a summary and some suggestions for future 
research. 

13.2 The Affine-Scaling Primal Algorithm 

We consider a linear programming problem in standard/orm, given by 

max c T x 

(13.1) s.t. Ax=b 
X~O, 

where x, c E fYt", b E fYtm and where A is an m x n matrix of full row rank, m. To 
develop an interior algorithm, we have to provide for a stepping mechanism that 
starts from the interior of the feasible region and moves to another interior point in 
such a way that the objective is improved. This process repeats itself until no further 
improvement is possible. It stops when some termination conditions are met. 
We concern ourselves in this section just with the stepping mechanism that allows 
us to move from one interior point to another while improving the objective 
function. To this end, let us assume that given the system in (13.1), and an initial 
feasible and interior point (Le., one whose components are all strictly positive), we 
seek to proceed in an ascent direction to the next interior point. Therefore, denoting 
this starting interior feasible point by Xo (xo > 0), then feasibility of (13.1) implies 

(13.2) Axo = b. 

Next, we seek a step direction vector, dx, that takes us in an ascent direction to a 
new point x/,.,.. while maintaining feasibility. Ifthe new point is obtained through 

(13.3) 

then feasibility requires 

Axllew = A(xo + dx) = Axo + Adx = b 

but since Axo = b, this results in the first condition on the step direction vector, dx, 
which is then given by 

(13.4) Adx = O. 

In addition, if the step direction vector, dx, takes us in an ascent direction, then the 
following condition must hold: cT x llew ~ c

T xo. Using the expression for x new from 
(13.3) we have 
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which leads to the second condition on the step direction vector stated through 

(13.5) cT dx ~ o. 
Thus we have derived two requirements that the step direction vector, dx, must 
satisfy. The first one requires that the step direction vector has to be orthogonal to 
every row of the constraints matrix A. The second requires that the inner product of 
the step direction vector, dx, with the objective vector, c, be nonnegative. 

We know that when searching for a solution to a maximization problem one 
should step along the direction of the gradient. For the linear case under 
consideration the gradient is simply the objective vector, c. Clearly, stepping along 
the objective vector is valid only if feasibility of the current point is maintained and 
if it satisfies the ascent condition. Therefore, if the gradient satisfies the conditions 
stated in (13.4) - (13.5) it provides a valid ascent direction, otherwise, an alternative 
direction is needed. Can we modify the gradient direction somehow so that (13.4) -
(13.5) are both satisfied? 

We start our search by noting that the first condition requires that the step 
direction vector, dx, belongs to the null space of the m x n matrix A. The latter is 
defined through 

(13.6) .AI(A) = {x: Ax = 0, x E&1t"}. 

A projection operator for this space is defined by the n x n matrix P, where 

(13.7) T( T)-I P=III-A AA A. 

With this projection operator, given any vector Z E &1t", its projection on the null 
space of A given by y = Pz, satisfies Ay = O. For this projection matrix, in addition 
to satisfying AP = 0, the following two properties are readily verified 

(13.8) p=pT
, and p=p2

• 

For the linear programming problem of (13.1) the gradient, c, should not be 
expected to satisfy (13.4)-(13.5) for each case. Can we modify this direction? 
Projecting it perhaps on the null space of A? To check if this is a valid approach, 
what is needed is to check the projected gradient against the two conditions of 
(13.4)-(13.5). Projecting the gradient on the null space of A, we find the step 
direction vector through dx = Pc. The feasibility condition of (13.4) is satisfied 
automatically by virtue of the projection itself. For the ascent condition we find, 
using (13.8), the following 

(13.9) cTdx = cT (Pc) = cT (P2c) = (PC)T (Pc) = "PcW ~ 0, 

which indicates that we are stepping in an ascent direction as required by (13.5). 
The discussion thus far indicates that stepping through the interior from one 

feasible point to another, while moving in an ascent direction, should be along the 
projected gradient. Note, however, that according to our result thus far we can do it 
only once, since wherever we stop, the next step will be along the same direction. 
Stepping again along the same direction will, sooner or later, terminate us at the 
boundary of the polytope. So, even though our step direction, dx, satisfies both 
(13.4) and (13.5) it provides us with a constant direction that does not change from 
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one iteration to another. To cause it to change we need to start each iteration from a 
somewhat different point. A way to do it is provided through the concept of 
centering. This concept and its use in modifying our stepping mechanism is 
discussed next. 

Given a starting vector, x = [XI X2 ••• x"f, its components measure the 

distance from the respective "walls" of the polytope where Xi = O. If one wishes to 
place a point at the "center" of the polytope, a simple way of doing it is by choosing 
a point whose components are all equal. One such choice is a point XI whose 
components are all of a unit distance from the walls. Therefore, given any starting 
point, x, we translate it to a point that is centered in the polytope, and which is of 
unit distance from all the wall of the polytope by using the centering transformation 
defined through 
(13.10) XI = D-Ix, 

where the scaling operation and the resulting scaled point are given by 

D = [~~ ~ J' and XI = [ : J. 
o 0 X" 1 

(13.11) 

Furthermore, since the original solution vector, x, is interior to the polytope, the 
diagonal elements of the matrix D are strictly positive and, therefore, D is invertible. 
This allows performing the scaling operation of (13.10) for any given interior point. 
Next, since the original solution vector, x, of the system in (13.1) is now scaled 
through the transformation given by (13.10), we replace it with the scaled (centered) 
vector, XI by using X = DxI. This lead to 

max cTDxI 

s.t. ADxI =b 

XI ~O, 
which results in the scaled linear programming problem described through 

(13.12) 

(13.13a) 

(13.13b) 

and where xpcI eflt", b efltm. 

max c{ XI 

s.t. AIxI = b 

As shown earlier, we should step in the direction of the projected gradient. 
Since we deal now with the scaled system of (13.12), we must distinguish between 
operations applied to the original system and those applied to the scaled system. The 
projection operator for the scaled linear programming problem of (13.12) is now 
given by PI where 

(13.14) 
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The (ascent) step direction vector for the scaled problem, dxp is found by projecting 
the gradient of the scaled problem, c l ' on the null space of the scaled matrix AI. 

That is 

(13.15) dxl = PICI · 

Using the expression for the scaled projection operator shown in (13.14) and the 
relations AI = AD and c i = Dc, we derive the ascent step direction vector, dxp in 
terms of the original information which is given by 

(13.16) dxl =PICI =D[C-AT(AD 2ATfAD 2c]' 
Letting (AD2 AT)y = AD2 C leads to 

(13.17) y = (AD2 ATt AD2c, 

and this allows us to simplify the expression for dx l to the one given by 

(13.18) dxl=o[c-ATy]' 

Recalling that this step is still in the scaled space, requires us to go back to the 
original space, by a re-scaling operation. Reversing the scaling shown in (13.10), the 
step direction vector for the new iterate, dx, in the original space is now given by 

(13.19) dx= Ddxl = D 2 [C_A T y]. 

It should be pointed out, however, that the vector, y, provides an estimate for the 
dual variable, associated with the dual problem of (13.1). In addition, note that the 
scaling and rescaling operations are now an implicit part of the sequence of 
algorithmic steps leading to the derivation of the step direction vector dx shown in 
(13.19), and are not taken explicitly. 

With the step direction vector, dx, given by (13.19) we take a step in that 
direction and obtain the next iterate of the solution vector, xnew. We use an updating 
formula given by 

(13.20) 

Since the step direction vector, dx, used in this update satisfies the feasibility 
condition of(13.5), the new iterate of the solution vector, xnew ' satisfies the equality 
constraints Ax = b. Note, however, that these equality constraints are satisfied 
regardless of how far we step along that direction. To guard against violating the 
nonnegativity constraints of the solution vector, x, we must establish a maximum 
allowable step in that direction. We denote this maximum step by the parameter a, 
and modify (13.20) into 

(13.21) X,,.", = Xo + padx, a>O, 

where 0 < p < 1, is a step size factor that keeps the new iterate interior. Note that if 
all components of dx are positive, one can increase the value of the objective 
without violating any of the feasibility constraints. The problem then is clearly 
unbounded and the solution process terminates. Otherwise, similar to the simplex 
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algorithm, this maximum allowable step size (or simply the step size), a, is found 
from a ratio test shown in (13.22). 

(13.22) a=min{-x~/dx;: 1::; i::; n, and dx; <O}. 
IS/Sn 

For computer implementation reasons, however, it is more advantageous to perform 
the ratio test of (13.22) in its reciprocal form which is given by 

(13.23) a = max{-dxJx~: I::; i::; n, and dx; < O}. 
1~/~11 

This ratio test, of course, leads to an update relation given by 
(13.24) x=xo+(p/a)dx, O<p<l. 

While the only constraint on the stepsize factor p is that shown in (13.24), values in 
practice range from 0.95 to 0.995. The sequence of steps described above continues 
until the problem is primal and dual feasible and when the duality gap falls below a 
pre-specified threshold. 

13.3 Moving From Single to Multiple Objectives 

The primal algorithm described earlier for single-objective linear programming 
(SOLP) problems goes through a series of steps in which the current iterate is first 
centered through a scaling operation, and then movement is made from the current 
position along the gradient projected on the null space of the scaled constraints 
matrix. Re-scaling the step direction vector allows us to derive the new iterate in the 
original space. When dealing with MOLP problems there are a few objective vectors 
and, therefore, the projected gradients usually point in more than one direction. 
Moving from a single-objective to a multiple-objective problem requires reconciling 
these different directions and finding a compromise direction. Arriving at such a 
compromise can be done in more ways than one as we show next. 

In the previous section we considered a single-objective linear programming 
problem in standard form which is described through 

max c T x 

(13.25) s.t. Ax= b, 

x~o, 

where x, c E &'til, b E &'t m and A is an m x n constraints matrix. In this section we 
consider an MOLP maximization problem having q linear objective functions. Such 
a problem is described through 

I
maXJ;(X) = c; x 
m~Xf2(X) = cJ x 

maxf/x)=c;x 
(13.26) 

s.t. XES={XE&'t":Ax=b, x~o}. 
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Such a problem is written in matrix form as 

"max" ex 

(13.27) s.t. XES=={XE&t"IAx=b, x~O} 

where the q x n matrix C has the q objective vectors of (13.26) as its rows. 
Before moving on, however, it is useful to recall some important definitions. 

We say that a point x· ES, in decision space is efficient iff there does not exist 
another XES such that ex ~ ex·, and ex:;t ex·. We say that x· E S is weakly 
efficient iff there does not exist another XES such that ex > ex· . Letting 
V == {v E &tq

: v = ex, x E &t"} be the set of feasible criterion vectors (i.e., the 
feasible region in objective space), a vector v E V corresponding to an efficient point 
is termed a nondominated criterion vector and a vector v E V corresponding to a 
weakly efficient point is termed a weakly nondominated criterion vector. The set of 
all efficient points is called the efficient set, denoted by E, and the set of all 
nondominated criterion vectors is called the nondominated set, denoted by N. For 
weakly efficient solutions, we use E W and N W

, respectively. 
Of the approaches devised at addressing the vector optimization problem of 

(13.27) the naive approach is noteworthy as an erroneous way of looking at this 
problem. When using such an approach one is tempted to bypass the difficulty 
introduced through the q x n matrix of objective vectors, C, by trying some static 
weighting scheme to reduce the q objectives into a single weighted objective 
amenable to the direct application of a linear programming algorithm. Let 6. Qdenote 
a set of q positive and normalized weights defined by 

(13.28) 6.
q 

=={A E,'ytq: A; >0, Vl~i~q, and t.A; =l}. 

Then, using such weights, the problem in (13.27) is reduced to a single-objective 
linear programming problem described through 

max Al'ex 

(13.29) s.t. XES=={XE&t"IAx=b,x~O} 

A E6. q
• 

The rationale behind such an approach is that one can easily establish some ranking 
of the objectives (e.g., the first objective is twice as important than the second, etc.) 
which allows the establishment of this (static) weight vector, A. This rationale, 
however, is faulty. The reason is that, in general, the relative preference for the 
objectives and its underlying weighting scheme depends on where we are in 
solution space and changes from one location of the solution vector x, to another. 
Such weights should, therefore, be locally-relevant, and require reassessment during 
the solution process. They should not be taken as static entities. 

A more credible approach that attempts replacing the vector-valued 
optimization problem with a scalar-valued (single objective) optimization problem 
involves the use of a utility function, u( x) E &t '. This is a real-valued function 
capturing the OM's preference for all outcomes in decision space. When such a 
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function is available, the problem of (13.27) is effectively replaced by the problem 
shown in 

(13.30) 
max u(x) 

s.t. XES, u:fIt" ~ fltl 

and the optimal solution to this - generally nonlinear - problem is the solution 
vector, x', yielding the highest value of the utility function over all possible feasible 
outcomes. Conceptually then, when a utility function is known, one starts at a 
feasible point, generates a search direction that moves the current iterate along the 
gradient of the utility function to a new one with a higher utility value. When no 
utility function is available, one has to find a substitute to the gradient of the utility 
function. For any reasonable MOLP problem one cannot assume the availability of a 
utility function due to the size of the decision vector, x, which makes the assessment 
of a utility function, u(x), impractical. One has to assume, therefore, that the utility 
function is only implicitly-known. By this we mean that while a DM does not have 
access to an explicit utility function, preference statements can still be made. Most 
realistic MOLP algorithms use some sort of proxy measures to this implicitly-known 
utility function. 

The two approaches outlined above represent the two extremes of solution 
methods to MOLP problems: from the erroneous inherent in the naive approach to 
the ideal, and mostly impractical, situation inherent with the utility-based approach. 
Specific methods developed over the years for MOLP problems naturally fall 
between these two extremes. They attempt to combine the straightforward nature of 
the naive approach on the one hand with the clean mathematical nature of the utility
based approach on the other. 

In general then, moving from SOLP problems to MOLP problems poses, 
therefore, two questions. The first is concerned with preference elicitation and usage 
in the absence of a utility function, and the second is concerned with using this 
preference information in devising a step direction vector along which one steps 
from the current to the next iterate.. Let us consider first the latter question. An 
immediate suggestion that follows our basic development of the SOLP algorithm is 
to apply the basic steps to each of the q objective vectors on their own. That is, 
given a starting feasible and interior point Xo > 0, a search direction, dx;, is then 
found by projecting the i-th objective vector c;, (1 ~ i ~ q). Using these projections, 
the q respective new iterates, {x;}, are then evaluated through 

(13.31) 

where the step sizes, a;, are evaluated for each of the separate directions, Xo is the 
current iterate and p is the step size factor. The value of each of the q objective 
functions at each of these new iterates, is summarized in a vector of objective 
values, v;, where v; = ex;. The description of the current iterate and its 
corresponding q new iterates in decision space is shown in Figure 3.1 below. 

Starting at the current iterate, xo, the DM can now step along each of the q 
step direction vectors {dx;} and end up at the respective new iterate x; in decision 
space. Finding the corresponding points in objective space is easily evaluated 
through v; = Cx;. Since a step from the current iterate is taken along a single 
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direction, the q different directions should, somehow, be combined. One such way is 
offered by assessing relative preference to objective values at each of the q new 
iterates. We outline next such a procedure. 

Figure 13.1: Current and new iterates in decision space 

13.4 Combining Individual Step Direction Vectors 

We consider again the MOLP problem described through 

"max" Cx 

(13.32) s.t. XES == {x E$/IAx = b, x ~ O} 

where the q x n matrix C has the q objective vectors of (13.26) as its rows. 
Starting from an initial feasible and interior point in decision space, xO' each 

new interior iterate, corresponding to a specific objective function, c; is derived 
through 

(13.33) 

and the values of all the objectives at each of these new iterates are summarized in 
an objective vector, Vi' evaluated through 

(13.34) Vi = Cx;. where 1:S; i:S; q. 

Next, we proceed to assess relative preference for objective vectors {v;l at each of 
the new q iterates. This step results in a set of weights which are then applied to the 
q objectives to reduce them to a single objective. Note, however, that unlike the 
naIve approach, these weights are locally-relevant rather than static, and are re
assessed at each iteration. 

Looking from the current iterate, xO' to each of the new iterates and their 
respective objective values, the DM is asked to assess relative preferences for each 
of these new iterates. Preference for, say, Xi over Xj implies that the DM assesses 

the implicitly-known utility at Xi to be higher than that at Xj and, therefore 

(13.35) 
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In the absence of a utility function, this preference assessment is carried out using 
some sort of an evaluation methodology capable of assigning numerical values to 
the strength of preference for each of the q new iterates. Whatever methodology one 
uses should result in a vector of weights or priorities, W, providing a measure of 
relative preference for each of the objective vectors {Vi}. If the actual utility function 
was available, we could use the (normalized) utilities at the new iterates {Xi} as 
components for such a weighting vector. In fact, if the DM's answers truly reflect his 
utility function, then whenever Xi ~ x j ' this implies 

(13.36) 

Normalizing the assessed weights allows us to maintain the proper ratio between the 
utility values at the respective points in objective space. 

With the utility at each of the new iterates in objective space approximated 
through the respective component of the assessed weight vector, w, we proceed to 
establish a compromise direction. Specifically, the components of the weight vector 
are now used as coefficients of a convex combination of the q single step direction 
vectors yielding a single step direction vector, dx, along which we take the next step. 
The resulting new interior iterate is then found from 

q 

(13.37) xn<w = Xo + pdx = LWi(xO + paidxi)· 
i=1 

Since the weight vector, p, is normalized, we find 
q 

(13.38) xnew = Xo + pdx = Xo + PL(wiai)dxi 
;=1 

and the combined step direction vector is, therefore, given by 

(13.39) 
i=1 

The new iterate is now evaluated through 

(13.40) xnew = Xo + pdx, o<p< 1, 

where W E 11 q, namely 
q 

(13.41) Wi > 0, VI5, i 5, q, and L Wi = 1. 
;=1 

We see, therefore, that the set of weights, {w;}, together with the step sizes {a;}, are 
used to combine the q individual step direction vectors, {dx;}, into a single 
combined direction, dx given by (13.39). 

The procedure for using interior search directions and generating a trajectory 
of interior iterates, while using the affine-scaling primal algorithm is, therefore, as 
follows. We project each of the individual objective vectors, establish the 
corresponding step sizes, {ai}, and using a common step size factor, p, we step into 
q different interior new iterates, {Xi}. Next, we evaluate the value of the q objective 
vectors, {v;}, at each of the iterates in decision space, {x;}. Assessing relative 
preference for each of these objective vectors, allows us to arrive at a set of 
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normalized weights, {Wi}, which are then used to form a convex combination that 
yields the combined step direction vector, dx, as given in (13.39), along which we 
step to the next interior iterate. This general procedure is depicted below in Fig. 
13.2a, where an MOLP problem with two objectives is considered. 

Figure 13.2a: Taking one Combined Step Figure 13 .2b: Combining Step Directions 

In a similar manner, the procedure repeats itself to generate an entire interior 
trajectory of solution iterates as shown in Fig. 13.2b. This procedure seems 
straightforward enough. Let us illustrate it with a numerical example before 
proceeding onward with our development. 

Example 13.1: Consider an MOLP problem described by 

{
max J; = XI 

max 12 = X 2 
s.t. xl+x2~10 

X I ,X2 ~ 0 

Xo = [1 1 8 r ,(for the problem in standard form) 

and where u(x) = XIX 2• 

JO 

5+---~ 

o 5 10 

Figure 13.3 : Feasible region 
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Note that with the utility function as stipulated above, the MOLP problem has a 
unique optimal solution given by x~ = 5, x; = 5,and where u(x; ,x;) = 25. Using the 
affine-scaling primal algorithm, we proceed next to project each of the objective 
vectors. This results with the two step direction vectors given by 

[ 

0.9848] 
dxl = -0.0152 , 

-0.9697 [

-0,0152] 
dx2 = 0.9848. 

-0.9697 

Next, performing the required ratio test, and taking an interior step using a step size 
factor of p = 0.5 we arrive at the two new interior iterates given by 

[

5.0625] 
XI = x+ padxl = 0.9375, 

[

0.9375] 
x 2 = X + padx2 = 5.0625. 

4.0000 4.0000 

The availability of a utility function allows us direct evaluation of the necessary 
weighting coefficients at the new iterates and avoid the need for an interaction with 
a DM. The availability of the utility function allows us, in addition, to test the 
algorithmic steps and verify that we arrive at the true optimal solution. The utility 
values and the normalized weighting coefficients are given by 

The combined step direction vector, dx, is evaluated now through 

and the new iterate (corresponding to a step size factor of p = 0.5) with its respective 
utility value are then given by 

[

3.0000] 
x"ew = xoJd + padx = 3.0000, 

4.0000 

and the value of the utility function at this point is given by 

u( x"ew) = 9.000. 
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The complete summary of the first ten iterations is shown in the table below 

Table 13.1: Summary of iterations (p=0.5) 

k xl(k) x 2(k) u(x) 

0 1.0000 1.0000 1.0000 
1 3.0000 3.0000 9.0000 
2 4.0000 4.0000 16.0000 
3 4.2500 4.2500 18.0625 
4 4.3824 4.3824 19.2050 
5 4.4694 4.4694 19.9756 
6 4.5324 4.5324 20.5426 
7 4.5806 4.5806 20.9822 
8 4.6190 4.6190 21.3354 
9 4.6505 4.6505 21.6267 
10 4.6767 4.6767 21.8718 

The value of the utility at the current iterate is depicted in Fig. 13.4 below. 

25,----------------------------------, 

() 
Iteration 

4 10 

Figure 13.4: Summary of iterations 

• 
13.5 Anchoring Points 

The procedure outlined above for combining the individual step direction vectors 
into a single compromise direction through a convex combination seems like a 
straightforward plausible approach that is likely to make good progress toward the 
optimal solution. Unfortunately this is not always the case! We discuss next the 
reason for this statement and the required corrective measures offered through the 
introduction of anchoring points. Before proceeding, however, we need to defme the 
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notion of an end point. When stepping from the current iterate along a step direction 
vector to a new interior iterate, the updating formula we use is given by 

(13.42) x = Xo + padx, where 0 < p <1. 

The step size factor, p, determines how close we come to the boundary of the 
constraints polytope. Therefore, taking a full step by choosing the step size factor 
according to p = I, we derive a new iterate that is located on the boundary of the 
constraints polytope. This point is therefore given by 

(l3.43) x = Xo + adx, 

where the step size, a, is determined in the usual way to ensure the nonnegativity of 
the new decision iterate, x. We term such an end point an anchor point for reasons 
discussed below. 

Definition 13.1: An anchor point, X a , to an MOLP problem is a point on the 
boundary of the constraints polytope found by taking a full step (p = I) along a 
combined step direction vector, dx. Such a point is derived by xa = x + adx. 

With these definitions, consider now the situation depicted in Fig. l3.5.1 
below. What is shown is a feasible region of a simple linear programming problem 
having two objective functions given by J; = max XI' and fz = max Xz. We start 
from an interior feasible point denoted by x(O), that is placed on a utility curve 
u(x) = const., and the gradient shown in Fig. l3.5 indicates the direction of 
increased utility values. The optimal point where the utility function reaches its 
highest value is indicated as well. In addition, we show the two step direction 
vectors dx l and dxz generated by applying the algorithmic details of an interior 
point linear programming algorithm. 

X 2 u(x)=const. 

Figure 13.5: Moving Along Gradients 

By assessing local preferences for the two directions indicated above and forming 
the necessary convex combination, we arrive at the new interior iterate, x(l), as 
indicated above. Note that at xo, whatever the assessed weights are for the two 
directions, the new interior iterate, XI' leads to a utility curve of higher values. 
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Furthermore, at x(l), we see that if one is to move to a utility curve of higher value, 
the step direction vector dx2 should be weighted much heavier than that of dxl 

which points to a direction oflower utility. 
We proceed by moving from x(l), to a new interior iterate x(2), at which the 

step direction vectors dxl and dx2 point in the direction as indicated in Fig. 13.6 
below. Clearly, at this point there does not exist a convex combination of the two 
step direction vectors, dxl and dx2 capable of moving the current iterate to a higher 
utility value. Whatever convex combination one forms at the current iterate points in 
such a way that the next iterate has a lower utility value. Is there a way to move 
from the current iterate to a point of higher utility value rather than decreasing it? 
This is where we make use of the concept of an anchor point. 

Figure 13.6: The Need for Anchoring 

Note that the iterate denoted by x(l), is derived by stepping away from x(O) 
while using a certain step size factor 0 < p < l. Taking a full step (Le., p = I) along 
dx moves us all the way to the boundary where we establish a boundary point, x end . 

Having the boundary point xel'" , however, introduces an additional step direction 
vector derived through dxend = xend - x(l), which points from x(l), towards the 
boundary point. One proceeds now to form a convex combination that includes dxl , 

dx2 , as well as dxel",. With the aid of an anchor point, when we are at the iterate 
denoted by x(l) we have an additional step direction vector pointing to a point on 
the boundary. With the aid of this additional boundary point - defined earlier as an 
anchor point - we are now capable of moving the current iterate to higher utility 
value. We refer to such a boundary point as an anchor point as it provides an anchor 
capable of lifting us to higher values of utility. 
Let us illustrate a conceptual sequence of iteration using anchor points together with 
the step direction vectors. Consider the situation depicted in Fig. 13.7 below. The 
two objectives are given by J; = max Xl' and h = max x 2 • The optimal solutions 
for each of the two objectives are denoted by x; and x; respectively. Starting the 
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solution process from an interior feasible iterate denoted by xO' we project the two 
objective vectors and derive the two step direction vectors denoted by dxl , and dx2 , 

respectively. Using a certain step size factor, p, we arrive at two new interior 
iterates. We proceed next to assess relative preference for the objective vectors at 
these two new iterates, and forming the required convex combination we establish 
our next interior iterate denoted by Xl' below. Note that by taking a full step from 
the starting iterate, x o, along dx we establish an anchor point on the boundary. Such 
a point is denoted as A below. 

x 

~ ______ ~~~ ______________ ~ XI 

Figure 13.7: Successive Anchors 

Next, we move from Xl' to the next iterate. We start by deriving the step 
direction vectors dxp and dx2 , but now we add an additional step direction that 
points toward the anchor point, A. Stepping along these three directions by using a 
step size factor, p, we arrive at three new interior iterates. Assessing preference and 
taking a convex combination we derive a step direction vector, dx, along which we 
move to the next iterate denoted by x 2 • Taking a full step along the derived step 
direction, dx, establishes a new anchor point denoted by B in Figure 13.7 above. 

Clearly then, each iteration adds another anchor to the existing set of points 
generated thus far. This raises an interesting question of how many of them to keep 
and how to trim the set to a manageable number. The simplest way of handling this 
issue is to keep all anchor points. This, however, increases the set of anchors by one 
at each iterate. The drawback with such an approach is the increased burden on the 
OM. Recall that when forming the convex combination, relative preference of 
objective vectors is assessed. Since these objective vectors include also those 
corresponding to anchor points, increasing the number of anchor points increases the 
number of vectors compared. After a few iterations this may become an unruly 
process and quite tedious for the OM. 

A simpler approach is offered by keeping a constant number of anchors. Once 
this number is reached, each additional anchor point is compared against those 
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already in the set. If the value of the objective vector at the new anchor point is 
preferred to one of the existing anchors, we bring the new point into the set, and 
remove the least preferred anchor from the set. Doing so, keeps the most preferred 
anchors encountered during the solution process. In addition, since solving single
objective LP problems is cheap, while interacting with a OM is not, this 
process allows an added benefit. We may start the solution process by solving the 
MOLP problem for a few weighted combinations of its objectives. That is, solve the 
following problem for q different sets of A. E llq 

max A.Tex 
(13.44) S.t. XES={XE&'t"IAx=b, x~O} 

A. E!l.q. 

It is well known [9] that a solution to this single-objective parametric linear 
programming problem results in an efficient solution. We therefore, start our 
solution with a set of efficient anchor points which are generated off-line, and do not 
require any interaction with a OM. A simple way to start, is to generate an 
approximate ideal point. Recall that an ideal point is that where each of the 
objectives reaches its highest value. Therefore, by solving (13.44) q times where at 
each run we favor heavily one of the objectives, we derive a set of anchors each 
favoring one of the objectives. The solution process that ensues serves to bring this 
starting set closer to each other until a final compromise solution is arrived. 

The importance of anchor points was illustrated graphically, we now provide 
the required algorithmic modifications and a summary of the proposed MOLP 
algorithm. Recall that an interior iterate, xllew ' and its corresponding anchor point 
(derived and the end ofa full step along dx), x.,u}' are derived from similar updating 
formulas differing only in the use of a step size factor, p. Specifically, we have 

X,",w = Xo + padx, where 0 < p < 1. 

X.,u} = Xo + adx. 

Assuming that we keep on hand a full set of q anchor points, {X~lIchor}, where 
I::;; i::;; q, a step direction vector, dxelld , pointing from the current iterate, xo, toward 
a particular end point, {x."A, is readily derived through 

(13.45) 

Using a step size factor, p, the interior point along this direction, x.,u}' as well at the 
value of the objectives at this point, vetul , are evaluated through 

(13.46) 

Assessing relative preference for each of the q interior iterates, {Xi}, together with 
the q anchor points, {X~lIch(}r}, allows the derivation of the combined step direction 
vector, dx, which is now derived through 

(13.47) 
i=! i=! 
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where {Wi} is the set of weights expressing assessed relative preference for the 
interior iterates, {Xi} generated by stepping along {de} and using a step size factor, 
p, and the set {wJ expresses relative preference for the interior iterates, {X~,chor}, 
generated according to (13.46). Note that these sets of weights are assessed together 
and satisfy 

q q 

(13.48) L Wi + L Wi = I, where Wi > 0, W; > 0, VI:$; i :$; q. 
;=) i=1 

With the modified step direction vector, dx, given as in (13.47), the new interior 
iterate is readily derived according to 

(13.49) 

It should be noted, however, that by taking a full step along the combined direction, 
dx, we establish a new boundary point given by 

(13.50) 

Evaluating the value of the objectives at this point through v new = Cxnew ' allows us 
to compare DM's preference for this point against the existing anchor points. If this 
point is preferable to any of the existing anchor points, we replace that anchor point 
with the newly derived anchor points. The current set of anchor points continues to 
contain the most preferred boundary points encountered during the solution process. 
Before demonstrating the modified interior-point algorithm through an example, we 
provide a summary of its algorithmic steps below. 

Summary of the Affine-Scaling Interior MOLP Algorithm: 

Consider a MOLP problem in standard form given by 
"max" ex 

S.t. XES={XE.o/t"IAx=b, x~O} 

for which a starting feasible and strictly interior solution vector, xO' is given. That 
is, Axo = b, and Xo > O. The affine-scaling interior-point MOLP algorithm 
(ASIMOLP) proceeds as follows: 

Step 1: Initialize iteration counter, k:= 0, and solution vector through x(k) = xO' 
Choose q different weight vectors, A. E A q, and solve - for each set - the 
resulting weighted MOLP problem as shown in (13.44). The resulting q 
solutions provide the initial set of anchor points, {Xi}. 

Step 2: Increment the iteration counter, k: = k + I, and define the scaling matrix, 
D, as D = diag[x1(k) x 2(k) ... x

l1
(k)f. Solve for the m dimensional 

vector / (k) from the q symmetric systems of equations given by 

(AD2 AT)yi(k) = AD2ei, VI:$; i:$; q, 

where the i-th objective, ei
, is the i-th row of the q x n objective matrix 
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C. The i-th step direction vector at the k-th iteration, dxi (k), is then 
derived through 
dxi(k) = D2[Ci - AT yi (k)], VI ~ i ~ q. 

Step 3: Find the set of q new interior iterates, xi(k + I), through 

Xi (k + 1) = Xi (k) + pa ;dxi (k), VI ~ i ~ q, and 0 < p <1. 

Proceed to evaluate the value vectors Vi (k + I), at these points, through 

vi(k+I)=Cxi(k+I), VI~i~q. 

Step 4: Use an assessment methodology to determine the relative preference, 
{wJ, for each of the q objective vectors at the end of the new interior 
iterates, as well as preference, {Wi}' for the objective vectors at the end of 
the step directions pointing toward the anchor points. Use these weights 
to derive the step combined direction vector, dx, described through 

q q 

dx = p~)wia;)dxi + PL~(Xelld -xo)· 
i=1 i=1 

Step 5: Find the next iterate through the updating equation given by 

x(k + I) = x(k)+,aU, where 0 < p <1. 

Take a full step along the direction dx and find the new boundary point: 

xll<w = x(k)+dx, 

Evaluate the objective vector, vllew ' at this point through vllew = Cxnew ' If 
the value vector v,/ew is preferred to any of the objective vectors of the 
anchor points, remove the least preferred anchor point from the current 
list and replace it with x llew . If termination conditions are met, STOP; 
otherwise, Goto Step 2. 

Example 13.2: Consider the problem [14] described through 

{
max f. = XI 

max 12 =X2 
s.t. 

j
8XI +6X2 2: 

5xI + 7X2 2: 

XI +X2 ~ 

5xI + 7X2 2: 

112 

96 
18 

o 

• 
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Where: xo=[13 4.5 19 0.5 O.5r,and u(X)=X1X2 • The feasible region for this 

problem is depicted in Fig. 13.8. 
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Figure 13.8: Feasible region 

Performing the steps of the proposed MOLP algorithm, we generate a sequence of 
interior iterates summarized in Table 13.2 below. Note that in lieu of an interaction 
with a DM we have used the postulated utility function. 

Table 13.2, Summary of iterations (p = 0.4) 

k x,(k) x2(k) ucurrent uanchor 

0 13.0000 4.5000 58.5000 45.0001 
1 11.1799 6.3796 71.3235 45.0001 
2 9.9388 7.7369 76.8955 74.6191 
3 9.4939 8.3303 79.0869 80.9989 
4 8.4007 9.5149 79.9322 80.9989 
5 8.3498 9.6099 80.2414 80.9989 
6 8.5744 9.4064 80.6548 80.9989 
7 8.7535 9.2374 80.8594 80.9989 
8 8.8328 9.1629 80.9336 80.9989 
9 8.8518 9.1461 80.9596 80.9989 
10 8.8566 9.1424 80.9706 80.9989 

The plot of the utility value at the current iterate and that of the best anchor point is 
shown in Fig. 13.9 below. In addition, we show the plot of the utility value at the 
current iterate when no anchor points are used. 
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Figure 13.9: Results with Anchors (p=O.4) 

• 
This concludes the development of our first interior-point MOLP algorithm. The 
resulting approach uses the DM to generate local preference information to guide 
the generation of interior solution iterates. No restriction was placed on the step size 
taken when moving from one interior iterate to another. It can be as small or as large 
as desired. Paying closer attention to the issue of step size and its implications, 
another MOLP approach can be developed. In this approach one steps along an 
estimate to the gradient of the utility function at the current iterate. For the 
approximation to be valid, small steps have to be taken. We do not pursue the 
development of this variant here. Interested readers should refer to [3]. 

13.6 Projecting Aspirations 

The MOLP approach presented thus far relies on the DM to generate local 
preference information that guides the interior trajectory of solution iterates toward 
the fmal compromise solution. There is another way for using the DM and that is by 
stating aspirations for values of the objectives. Doing so, allows one to generate an 
interior solution of iterates that moves toward the projection of the stated aspiration 
in objective space on the efficient frontier in decision space. This is the subject of 
discussion in this section. 

Searching the set of nondominated solutions is greatly aided by means of the 
so-called achievement scalarizing function suggested by Wierzbicki [17-18]. Such a 
function projects any given (feasible or infeasible) point in objective space onto the 
set of (weakly) nondominated solutions. The simplest form proposed by Wierzbicki 
is the one given by 

(13.51) s(g, v, w)= max{g; - v;}, 
I';;';q W; 
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where w > 0, (w E.o/tq) is a vector of weights, g E.o/tq, is a vector of stated 
aspirations in objective space, v EV == {v E.o/tqjV = ex, x ES}. We show next that 
by minimizing s(g,v,w) subject to v EV, we obtain a solution v', which is weakly 
nondominated. We start by noting that for all v E V, we have by definition 

s(g, v·, w) ~ s(g, v, w) 

from which it follows that 

{ gi ~iV;} :::; { gi ;Vi }, for at least one i E{I,2,. .. ,q}. 

This, in turn, implies that Vi:::; v;, for at least one i E{I,2,.··,q}. Hence, it follows 
that there exists no other v E V, such that v > v·, implying that v· is weakly 
nondominated. If the given aspiration point g E.o/t q is feasible, then for a solution 
v· ENw, we have v· ~g. Note that if the solution is unique, v· EN, otherwise it 
may be dominated. To generate only nondominated (instead of weakly 
nondominated) solutions, more complicated forms for the achievement scalarizing 
function should be used to guarantee uniqueness. For simplicity, we assume in the 
discussion that follows that the solution v· is always nondominated. 

To illustrate the use of an achievement scalarizing function, let us assume that 
we have a two-criterion problem with a feasible region having three extreme points 
located at {(O,O), (0,8), (l6,0)}, as shown in Fig. 13.10 below. Let us illustrate the 
projection of different aspiration points in objective space. We consider both the 
case of feasible aspirations as well as that of infeasible aspirations. Let us assume 

that the DM first specifies a feasible aspiration level point gA = [2 2y, as denoted 

by point A below. Using a weight vector w = [2 IY, the minimum of the 

achievement scalarizing function is reached at a point VA = [7 4.5y. 

Figure 13.10: Projecting feasible and infeasible aspiration points. 
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Similarly, if an aspiration point is infeasible, say gD = [12 Sf, then the minimum 

of the achievement scalarizing function is reached at point VA = [6 5f. The value 
of the scalarizing function is -1 in the first case and + 1 in the second. If the 
aspiration point is dominated by a feasible point, then the value of scalarizing 
function is always negative; otherwise it is non-negative. It is zero, if an aspiration 
level point is weakly-nondominated. Additional aspiration points in objective space 
and their respective projections are shown in Fig. 13.10. 

To project an aspiration point requires the minimization of an achievement 
scalarizing function such as described in (13.51). Doing so results in the following 
min-max problem 

(13.52) min{s(g, v, w)} = min{max(gi - Vi)} 
xeS xeS IS/Sq Wi 

It is readily shown that the problem in (13.52) is equivalent to the problem described 
through 

(13.53) 

min a 
s.t. Cx+aw ~ g 

XES, afree. 

Subtracting a surplus vector, Z, we find 
min a 

(13.54) s.t. Cx+aw-z=g 
XES, afree, Z ~ o. 

Letting an augmented solution vector be defined through x = [x a Z f, the 
problem in (13.54) is now compactly described through 

(13.55) 

where 

min a 

s.t. AX=b 

x ~o, z ~o, 
afree. 

-=[*f{0 0] A c w -I ' 
q 

The original MOLP-problem is now reduced to a single-objective optimization 
problem. The augmented system is amenable now to the application of a regular 
single-objective interior-point algorithm such as the affine-scaling primal algorithm 
described earlier. The procedure starts by asking the DM to state an aspiration. 
Starting from an interior solution, the algorithm generates a few interior iterates that 
moves the interior trajectory of iterates closer to the boundary. As we move closer, 
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the DM has the option of varying the original stated aspiration. Doing so, changes 
the structure of the augmented system in (13.55) and, as a result, the interior iterates 
will deviate from their starting trajectory. If the DM keeps the current aspiration 
unchanged, the solution process continues unhindered until it reaches a 
nondominated solution. Using an interior algorithm for the augmented system of 
(13.55) obviates the need for many pivot operations and going through many 
intermediate solution steps requiring DM's intervention. In addition, starting deep in 
the interior of the feasible region, allows one to generate a win-win trajectory of 
iterates along which all objective values improve as we move through the interior 
toward the boundary. It is our belief that presenting the DM with dominated 
solutions allows easier elicitation of preference that steers the solution trajectory in 
an overall desired direction. In fact, we believe that this class of algorithms where 
one moves through the interior may provide an easier setting for the DM to respond 
to when asked for the preference information inherent with every MOLP procedure. 

Example 13.3: 

We demonstrate our proposed approach with an example whose solution was 
reported earlier using simplex-based approaches [12]. Consider the MOLP problem 
described through: 

max h(x) =xl 

max h(x)=x2 

max f 3(x) = x3 

subject to: 

3xl + 2x1 + 3x3 ~ 18 

Xl + 2x2 + x3 ~ 10 

9xl + 20x2 + 7x3 ~ 96 
7xl + 20x2 + 9x3 ~ 96 
xl, x2, X3 ~ 0 

Adding the necessary slack variables, this problem becomes 

"maximize" ex 
S.t. Ax=b 

x ~O, 
where: 

A=[f 
2 3 0 0 

~l b=[~;l c=[~ ~] 
0 0 0 0 0 

2 1 0 1 0 
1 0 0 0 0 

20 7 0 0 1 
0 0 0 0 

20 9 0 0 0 
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Converting this system of constraints to the form required by our proposed approach 
results in the augmented system given by 

min a 

s.t. AX=b 

x~O, Z~O, 

afree. 

where x = [x a Z r ' x E f!lt 7, Z E f!lt 3, b E f!lt 7, and the matrix A and the vector jj 

are given by 

The optimization problem is now min n, subject to the augmented system of 
constraints. Assuming a utility function given by u( x) = min(3xl ,5X2 ,3X3)' leads to a 
unique solution given by x = [2.5 1.5 2.5t. Note that this solution is on a face of a 
polytope and not at an extreme point. To test our algorithm, we set our aspiration 
level at g = [3.5 2.5 3.5f, and run the proposed algorithm with a step size factor of 
p= 0.9. The results of the iterative process, for an initial vector defined by 
Xo = [11110660 60f, are shown in Table 13.3. For brevity we show only the 
original decision vector's components and exclude the slack and surplus variables. 
We also evaluate the relative duality gap during the iterative process and show it in 
the last column ofthe table. 

Table 13.3, Solution results ( p = 0.9 ) 

k XI X 2 X3 cT x Gap 

0 1.0000 1.0000 1.0000 10.000 
1.0851 1.0431 1.0851 3.1649 0.2958 

2 2.0440 1.1160 2.0440 1.5548 0.2554 
3 2.4455 1.4883 2.4455 1.l424 0.0541 
4 2.4924 1.5053 2.4924 1.0355 0.0213 
5 2.4967 1.4989 2.4967 1.0061 0.0032 
6 2.4994 1.5006 2.4994 1.0024 0.0012 
7 2.4998 1.4998 2.4998 1.0005 0.0002 
8 2.5000 1.5000 2.5000 1.0002 0.0001 

9 2.5000 1.5000 2.5000 1.0000 0.0000 

10 2.5000 1.5000 2.5000 1.0000 0.0000 

We should point out, however, that the primal algorithm generates a sequence of 
iterates that provide a descent direction for the primal objective. 

The plot of the decision variables for the first three components of the 
sequence of iterates is shown in Fig. 13.11. 
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Figure 13.11: Solution trajectories for the decision vector's components (p = 0.9) 

Next we run the algorithm with a series of aspiration levels which terminate with the 
one leading to the true optimal solution. We run 5 iterations with each aspiration 
level vector before asking the DM to reconsider new aspiration levels. We assume 
that the DM is willing to specify aspiration levels three times, i.e., at the first, 6-th, 
and Il-th iterations. The specific levels used are given by 

gl = [0.5 2.5 3.5f, 

g6 := [3.25 1.25 3.75f, 

gil =[3.5 2.5 3.5f. 

Solution results for this series of aspirations is summarized in Table 13.4, and 
plotted in Fig. 13.12. 

Note how the solution trajectory reacts to the change in aspirations at the 
proper intervals. At the 16-th iteration the DM is not willing anymore to specify new 
aspiration levels. Therefore, we continue the procedure until the duality gap falls 
below a pre-specified threshold (usually 10-6

). A good estimate for a nondominated 
solution is found. In this example, we use p = 0.6. By varying p, we can control 
how close to the boundary we allow the DM to move, before new aspiration levels 
are asked. If p is close to one, the system may first make a "U-turn" which moves 
the solution trajectory away from the boundary, when new aspiration levels are 
specified, before it approaches the boundary. Observing this kind of "U-turn" may 
be confusing to the DM. On the other hand, small p increases the number of 
iterations. At the moment, the specification of the step size factor, p, is one possible 
direction for future research. 
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Table 13.4, Solution results ( p = 0.6 ) 

k XI X 2 Xl cT x Gap 

0 1.0000 1.0000 1.0000 10.0000 
1 1.0135 1.0670 1.0253 6.3330 0.5936 
2 1.0052 1.2624 1.0393 4.6976 0.3822 
3 0.9247 1.8693 0.9974 3.5147 0.2186 
4 0.7062 3.0969 0.8775 2.1274 0.2187 
5 0.5012 3.6569 0.9006 1.5013 0.3023 
6 0.5166 3.6314 0.9508 5.6595 0.5725 
7 0.5609 3.5515 1.0960 3.8595 0.2931 
8 0.6960 3.3530 1.4170 3.0222 0.0776 
9 1.1961 2.8923 1.9538 2.2412 0.0999 
10 1.6528 2.4902 2.3183 1.7548 0.0111 
11 1.6740 2.4867 2.3078 1.4556 0.7030 
12 1.7631 2.4692 2.2512 1.0925 0.5052 
13 1.9773 2.4058 2.1296 0.8859 0.2888 
14 2.1517 2.2409 2.1542 0.7980 0.1260 
15 2.3365 1.8484 2.3360 0.7525 0.0109 
16 2.4314 1.5953 2.4312 5.1409 0.0257 
17 2.4697 1.5115 2.4696 3.1660 0.0392 
18 2.4865 1.4988 2.4865 2.2714 0.0210 
19 2.4944 1.5002 2.4944 1.5680 0.0086 
20 2.4977 1.5000 2.4977 1.2599 0.0034 

2 

o 5 10 15 20 

Figure 13.12: Solution trajectories for the decision vector's components (p = 0.6) 

13.7 Summary 

We have discussed in this paper the modification needed for adopting single
objective interior-point algorithm to MOLP problems. Specifically, we have 
described in considerable detail one variant of an interior-point algorithm termed the 
affine-scaling primal algorithm. We have discussed the basic questions one faces 
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when moving from a single-objective setting into a mUltiple-objective setting. We 
have developed two rather complete approaches for MOLP problems using an 
interior algorithm and have demonstrated these algorithms with numerical examples. 
Future work in this area should continue to explore ways of adopting interior 
algorithms to MOLP problems, compare relative performance issues of simplex
based MOLP algorithms and interior MOLP. Regardless of the specific topic one 
chooses to explore, we are certain that the use of interior-point algorithm will 
command a prominent position in the future of MOLP algorithm similar to that 
experience in the linear programming research literature. 
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Abstract: The rough sets theory has been proposed by Z. Pawlak in the 
early 80's to deal with inconsistency problems following from information 
granulation. It operates on an information table composed of a set U of 
objects (actions) described by a set Q of attributes. Its basic notions are: 
indiscernibility relation on U, lower and upper approximation of a subset or a 
partition of U, dependence and reduction of attributes from Q, and decision 
rules derived from lower approximations and boundaries of subsets identified 
with decision classes. The original rough sets idea has proved to be 
particularly useful in the analysis of multiattribute classification problems; 
however, it was failing when preferential ordering of attributes (criteria) had 
to be taken into account In order to deal with problems of multicriteria 
decision making (MCDM), like sorting, choice or ranking, a number of 
methodological changes to the original rough sets theory were necessary. The 
main change is the substitution of the indiscernibiIity relation by a dominance 
relation (crisp or fuzzy), which permits approximation of ordered sets in 
multicriteria sorting. In order to approximate preference relations in 
multicriteria choice and ranking problems, another change is necessary: 
substitution of the information table by a pairwise comparison table, where 
each row corresponds to a pair of objects described by binary relations on 
particular criteria. In all those MCDM problems, the new rough set approach 
ends with a set of decision rules, playing the role of a comprehensive 
preference model. It is more general than the classic functional or relational 
model and it is more understandable for the users because of its natural 
syntax. In order to workout a recommendation in one of the MCDM 
problems, we propose exploitation procedures of the set of decision rules. 
Finally, some other recently obtained results are given: rough approximations 
by means of similarity relations (crisp or fuzzy) and the equivalence of a 
decision rule preference model with a conjoint measurement model which is 
neither additive nor transitive. 
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14.1 A general view of rough sets 

14. 1. 1 Introduction 

The rough sets theory introduced by Z. Pawlak [58, 61] has often proved to be an 
excellent mathematical tool for the analysis of a vague description of objects (called 
actions in decision problems). The adjective vague, referring to the quality of 
information, means inconsistency or ambiguity which follows from information 
granulation. The rough sets philosophy is based on the assumption that with every 
object of the universe there is associated a certain amount of information (data, 
knowledge), expressed by means of some attributes used for object description. For 
example, if the objects are firms applying for a bank mortgage, the information 
given concerns their financial, economic and technical characteristics, that 
constitute their description. Objects having the same description are indiscernible 
(similar) with respect to the available information. The indiscemibility relation thus 
generated constitutes a mathematical basis of the rough sets theory; it induces a 
partition of the universe into blocks of indiscernible objects, called elementary sets, 
that can be used as ''bricks" to build knowledge about a real or abstract world The 
use of the indiscernibility relation results in information granulation. 

Any subset X of the universe may be expressed in terms of these bricks 
either precisely (as a union of elementary sets) or approximately only. In the latter 
case, the subset X may be characterized by two ordinary sets, called lower and 
upper approximations. A rough set is defined by means of these two 
approximations, which coincide in the case of an ordinary set. The lower 
approximation of X is composed of all the elementary sets included in X (whose 
elements, therefore, certainly belong to X), while the upper approximation of X 
consists of all the elementary sets which have a non-empty intersection with X 
(whose elements, therefore, may belong to X). Obviously, the difference between 
the upper and lower approximations constitutes the boundary region of the rough 
set, whose elements cannot be characterized with certainty as belonging or not to X, 
using the available information. The information about objects from the boundary 
region is, therefore, inconsistent or ambiguous. Qearly, in ordinary sets the 
boundary region is empty. The cardinality of the boundary region states, moreover, 
to what extent it is possible to express X in exact terms, on the basis of the available 
information For this reason, this cardinality may be used as a measure of vagueness 
of the information about X. 

The rough sets theory, dealing with representation and processing of vague 
information, presents a series of intersections and complements with respect to 
many other theories and mathematical techniques dealing with imperfect 
information, like probability theory, evidence theory of Dempster-Shafer, fuzzy sets 
theory, discriminant analysis and mereology (see [7, 8, 43, 59, 60, 64, 76, 86]). 

Some important characteristics of the rough set approach make of this a 
particularly interesting tool in a number of problems and concrete applications. 
With respect to the input information, it is possible to deal with both quantitative 
and qualitative data and inconsistencies need not to be removed prior to the 
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analysis. With reference to the output infonnation, it is possible to acquire a 
posteriori infonnation regarding the relevance of particular attributes and their 
subsets to the quality of approximation considered in the problem at hand, without 
any additional inter-attribute preference infonnation. Moreover, the final result in 
the form of nif .. , then ... " decision rules, using the most relevant attnbutes, is easy to 
interpret. 

14.1.2 The information table and indiscemibility relation 

For algorithmic reasons, the information regarding the objects is supplied in the 
form of an information table, whose separate rows refer to distinct objects (actions), 
and whose columns refer to the different attributes considered. Each cell of this 
table indicates, therefore, an evaluation (quantitative or qualitative) of the object 
placed in that row by means of the attribute in the corresponding column. In the 
case of quantitative evaluations on an attribute q, the domain of this attribute is 
suitably divided into subintervals and then codified, e.g. by natural numbers. This 
pre-processing of data, called discretization, is commonly used in machine learning 
in order to get a description of the phenomenon studied without noisy details. The 
problem of discretization is rather delicate, since the results of the analysis depend, 
in general, on the way of discretization. To this purpose suitable techniques and 
methodologies have been proposed (see, for example, [81, 10, 5, 56, 95]). 

Formally, an information table is the 4-mple S = <U,Q.V,f.>, where U is a 
finite set of objects (universe). Q={ q],'l2 •...• q,,} is a finite set of attributes, Vq is the 

domain of the attribute q, V = UqeQ Vq and f:Ux~V is a total function such that 

f(x,q)e Vq foreachqeQ. xeU. called information function. 

Therefore. each object x of U is described by a vector (string) 
DeSQ(x)=[f(x,q}),f(x.qz) •...• f(x,q,,)), called deSCription of x in terms of the 
evaluations of the attributes from Q; it represents the available infonnation about x. 
Obviously, xeU can be described in terms of any non-empty subset P~. 

To every (non-empty) subset of attributes P is associated an indiscernibility 
relation on U, denoted by Ip: 

Ip = {(x,y)eUxU: f(x,q) = f(y,q), VqeP}. 

If (x,y)eIp, it is said that the objects x and yare P-indiscemible. Clearly, 
the indiscernibility relation thus defined is an equivalence relation (reflexive, 
symmetric and transitive). The family of all the equivalence classes of the relation Ip 
is denoted by UIIp and the equivalence class containing an element xe U by lp(x). 
The equivalence classes of the relation Ip are called P-elementary sets. If P = Q the 
Q-elementary sets are called atoms. 
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14.1.3 Approximations 

Let S be an infonnation table, X a non-empty subset of U and 0;tP~Q. The P-Iower 
approximation and the P-upper approximation of X in S are defined, respectively, 
by: 

~(X)= {x E U : Ip (x)~ X}, 
~X)= UIp(x). 

xEX 

The elements of ~(X) are all and only those objects XEU which belong to 
the equivalence classes generated by the indiscernibility relation Ip, contained in X; 

the elements of ~X) are all and only those objects XE U which belong to the 
equivalence classes generated by the indiscernibility relation Ip, containing at least 
one object x belonging to X In other words, ~(X) is the largest union of the P-

elementary sets included in X, while ~X) is the smallest union of the P-elementary 
sets containing X. 

The P-boundary of X in S, denoted by Bnp(X), is 

Bnp(X) = ~X)-~(X) . 

The follOwing relation holds: ~(X) ~~ ~X). 
Therefore, if an object x belongs to ~(X), it is certainly also an element of 

X, while if x belongs to P(X), it may belong to the set X Bnp(X) constitutes the 

"doubtful region" of X: nothing can be said with certainty about the belonging of its 
elements to the set X. 

The following relation, called complementarity property, is satisfied: 

~(X)=U-P(U - X). 

If the P-boundary of X is empty, Bnp(X)=0, then the set X is an ordinary 
(exact) set with respect to P, that is, it may be expressed as the union of a certain 
number of P-elementary sets; otherwise, if Bnp(X);t ° , the set X is an approximate 
(rough) set with respect to P and may be characterized by means of the 

approximations ~(x) and P(X). The family of all the sets X~U having the same p
lower and P-upper approximations is called a rough set. 

We define the following ratio as accuracy of the approximation of X, 
X;t0, by means of the attributes from P 

ex. (X)= ~(X~ 
p ~(X~' 
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where IYI indicates the cardinality of a (finite) set Y. The result is, obviously, 
O:::;;ap(X):5J; if ap(X)=l, X is an ordinary (exact) set with respect to P; if ap(X)<I, 
X is a rough (vague) set with respect to P. 

We also define a quality of the approximation of X by means of the 
attributes from P as 

The quality yp(X) represents the relative frequency of the objects correctly classified 
using the attributes from P. Moreover, we have O:::;;ap(X):::;;yp(X):::;;l, yp(X)=O iff 
ap(X)=O and yp(X)= 1 iff ap(X)= 1. 

The definition of approximations of a subset X~U can be extended to a 
classification, i.e. a partition Y={Yt, ... ,Yu } of U. Subsets Yi , i=l, ... ,n, are 
disjunctive classes of Y. By P-lower (p-upper) approximation of Y in S we mean 
sets ~Y = ~t' ... ,~u} and PY = {i>Yt, ... ,pyu}, respectively. The coefficient 

is called quality of the approximation of classification Y by set of attributes P, or in 
short, quality of classification. It expresses the ratio of all P-correctly classified 
objects to all objects in the system. 

The main preoccupation of the rough sets theory is approximation of 
subsets or partitions of U, representing a knowledge about U, with other sets or 
partitions built up using available information about U. From the viewpoint of a 
particular object x e U, it may be interesting, however, to use the available 
information to assess the degree of its membership to a subset X of U. The subset X 
can be identified with a concept of knowledge to be approximated. Using the rough 

set approach one can calculate the membership function ~(x) (rough membership 

function) as 

The value of ~(x) may be interpreted analogously to conditional probability and 

may be understood as the degree of certainty (credibility) to which x belongs to X. 
Observe that the value of the membership function is calculated from the available 
data, and not subjectively assumed, as it is the case of membership functions of 
fuzzy sets. 

Between the rough membership function and the approximations of X the 
following relationships are valid: 
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~(X)={xeU: ~(x)=l}, 

p(X)={xeU: p.~{x)>o}, 

Bnp(X)={xeU: O<p.~{x)<l}, 

~(U - X)={xeU: p.~{x)=O}. 

In the rough sets theory there is, therefore, a close link between vagueness 
(granularity) connected with rough approximation of sets and uncertainty connected 
with rough membership of objects to sets. 

14. 1.4 Dependence and reduction of attributes 

A very important concept for concrete applications is that of dependence of 
attributes. Intuitively, a set of attributes T~ totally depends on a set of attributes 
P~ (notation P~T) if all the values of the attributes from T are uniquely 
determined by the values of the attributes from P, that is, if a functional dependence 
exists between evaluations by the attributes from P and by the attributes from T. In 
other words, the partition generated by the attributes from P is "finer" than that 
generated by the attributes from T, so that it is sufficient to use the attributes from P 
to build the partition Ulh. Formally, T totally depends on P iffI~T. 

Therefore, T is totally (partially) dependent on P if all (some) elements of 
the universe U may be univocally assigned to classes of the partition UIIT, using 
only the attributes from P. 

Another issue of great practical importance is that of "superfluous" data in 
an information table. Superfluous data can be eliminated, in fact, without 
deteriorating the information contained in the original table. 

Let P~ and peP. It is said that attribute p is superfluous in P if Ip=Ip.{p}; 
otherwise, p is indispensable in P. 

The set P is independent (orthogonal) if all its attributes are indispensable. 
The subset P' of P is a reduct of P (denotation Red(p» if P' is independent and 
Ipo=Ip. 

A reduct of P may also be defined with respect to an approximation of a 
partition Y of U. It is then called Y-reduct of P (denotation Redy(P» and specifies a 
minimal subset P' of P which keeps the quality of classification unchanged, i.e. 
"f p.{Y) = "f p (Y). In other words, the attributes that do not belong to Y-reduct of P are 

superfluous with respect to the classification Y of objects from U. 

More than one Y-reduct (or reduct) ofP may exist in an information table. 
The set containing all the indispensable attributes of P is known as the Y-core. 
Formally, 

Corey (p) = nRedy (p). 
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Obviously, since the Y --core is the intersection of all the Y-reducts of P, it is included 
in every Y-reduct of P. It is the most important subset of attributes from P, because 
none of its elements can be removed without deteriorating the quality of 
classification. 

The calculation of all the reducts is fairly complex (see [2, 44, 78, 96]). 
Nevertheless, in many practical applications it is not necessary to calculate all the 
reducts, but only some of them. For example, in [82], the following heuristic 
procedure has been used to obtain the most satisfactory reduct. Starting from single 
attributes, the one with the greatest quality of classification is chosen; then to the 
chosen attribute, another attribute is appended that gives the greatest increase to the 
quality of classification for the pair of attributes; then yet another attribute is 
appended to the pair giving the greatest increase to the quality of classification for 
the triple, and so on, until the required quality is reached by a subset of attributes. 
Thus, for further analysis, it is often sufficient to take into consideration a reduced 
information table, where the set Q of attributes is confined to the most satisfactory 
reduct. 

14. 1.5 Decision table and decision rules 

If in an information table the attributes of set Q are divided into condition attributes 
(set C;t:0) and decision attributes (set 1);t0), CvD=Q and CnD=0, such a table is 
called a decision table. The decision attributes induce a partition of U deduced from 
the indiscernibility relation ID in a way that is independent of the condition 
attributes. D-elementaty sets are called decision classes. There is a tendency to 
reduce the set C while keeping all important relationships between C and D, in 
order to make decisions on the basis of a smaller amount of information. When the 
set of condition attributes is replaced by one of its reducts, the quality of 
approximation of the classification induced by the decision attributes is not 
deteriorating. 

Since the tendency is to underline the functional dependencies between 
condition and decision attributes, a decision table may also be seen as a set of 
decision rules. These are logical statements (implications) of the type "if .. , then ... ", 
where the antecedent (condition part) specifies values assumed by one or more 
condition attributes (description of C-elementaty sets) and the consequence 
(decision part) specifies an assignment to one or more decision classes (description 
ofD-elementaty sets). Therefore, the syntax of a rule is the following: 

"iff(x,ql) is equal to rql and f(x,<u) is equal to rq2 and ... f(x,'Ip) is equal to rqp, then x 
belongs to Yjl or Yj2 or ... Y jk", 

where {qh<U""''Ip}~, (rqhrq2, ... ,rqp)EVqIXVq2X ... xVqp and Yjh Yj2, ... ,Yjk are some 
decision classes of the considered classification (D-elementaty sets). If the 
consequence is univocal, i.e. k=1, then the rule is exact, otherwise it is apprOximate 
or uncertain. 

An object XEU supports decision rule r if its description is matching both 
the condition part and the decision part of the rule. We also say that decision rule r 
covers object x. Each decision rule is characterized by its strength, defined as the 
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number of objects covered by the rule. In the case of approximate rules, the strength 
is calculated for each possible decision class sepamtely. 

Let us observe that exact rules are supported only by objects from the 
lower approximation of the corresponding decision class. Approximate rules are 
supported, in turn, only by objects from the boundaries of the corresponding 
decision classes. 

Procedures for generation of decision rules from a decision table use an 
inductive learning principle. The objects are considered as examples of decisions. In 
order to induce decision rules with a unique consequent assignment to a D
elementary set, the examples belonging to the D-elementary set are called posi tive 
and all the others negative. A decision rule is discriminant if it is consistent, i.e. 
distinguishes positive examples from negative ones, and minimal if removing any 
attribute from a condition part gives a rule covering also negative objects. It may be 
also interesting to look for partly discriminant rules. These are rules that, besides 
positive examples, could cover a limited number of negative ones. They are 
characterized by a coefficient, called level of discrimination, telling to what extent 
the rule is consistent, i.e. what is the ratio of positive examples to all examples 
covered by the rule. 

Generation of decision rules from decision tables is a complex task and a 
number of procedures have been proposed to solve it (see, for example, [36,37,51, 
75, 77, 88, 94, 105]). The existing induction algorithms use one of the following 
strategies: 

(a) generation of a minimal set of rules covering all objects from a decision 
table, 

(b) generation of an exhaustive set of rules consisting of all possible rules for a 
decision table, 

(c) generation of a set of 'strong' decision rules, even partly discriminant, 
covering relatively many objects each but not necessarily all objects from 
the decision table. 

14.1.6 Fuzzy measures and rough sets 

Let N={1,2, ... ,n} be a finite set, whose elements could be players in a game, criteria 
in a multicriteria decision problem, attributes in an information table, etc., and let 
P(N) denote the power set ofN, i.e. the set of all subsets ofN. Afozzy measure on 
N is a set function J.t.: P(N)~[O, 1] satisfying the following axioms: 

I) J.t.(0)=O, J.t.(N)=1, 
2) A!;;B implies J.t.(A)~J.t.(B), for all A,BEP(N). 

In the following, the first axiom is relaxed by considering the condition J.t.(N)~1 
instead of J.t.(N)= l. 

Within game theory, the function J.t.(A) is called characteristic function and 
represents the payoff obtained by the coalition A~ in a cooperative game ([73, 
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I»; in a multicriteria decision problem, ~A) can be interpreted as the conjoint 
importance of the criteria from A~N [14]. 

Some indices have been introduced in game theory as specific solutions of 
cooperative games. The most important are the Shapley value and the Banzhaf 
value. The Shapley value [73] for every ieN is defined by 

(n-IKI-I)!IKI! 
CPs(i) = L [~(Kv{i})-~(K)]. 

K~N-{i} n! 

The Banzhafvalue ([I» for every ieN is defined by 

<I>a(i) = _1_ L [~(Kv{i})-~(K)]. 
2n

-
t K~N-{i} 

The Shapley value and the Banzhaf value can be interpreted as specific kinds of 
weighted average contribution of element i alone to all coalitions. Let us remind 
that in the case of CPs(i) the value of ~ is shared among the elements of N, i.e. 

n 
L CPs (i) = 1 , while an analogous property does not hold for <I>a(i). 
i=l 

The Shapley and the Banzhaf indices have also been proposed to represent 
the average importance of particular criteria within multicriteria decision analysis, 
when for the conjoint importance of criteria fuzzy measures are used [54]. In 
addition to the indices concerning particular criteria, other indices have been 
proposed to measure the interaction between pairs of criteria. Interaction indices 
have been suggested by Murofushi and Soneda [55] and by Roubens [66] with 
respect to Shapley index and Banzhaf index, respectively. 
The Murofushi-Soneda interaction index for elements ijeN is defined by 

(n-IKI-2)!IKI! 
IMS(ij) = L [~(Kv{ij})-~(Kv{i})-~(Kv{j})+~(K)]. 

K~N-{i.j} (n -I)! 

The Roubens interaction index for elements ijeX is defined by 

The interaction indices IMs(i,j) and IR(ij) can be interpreted as specific kinds of 
average added values resulting from putting i and j together in each coalition. The 
following cases can happen: 

• IMs(ij)>O (IR(ij»O): i andj are complementary, 
• IMs(ij)<O (IR(ij)<O): i andj are substitutive, 
• IMs(ij)=O (IR(ij)=O): i andj are independent. 

The definition of interaction indices can be extended from non-ordered 
pairs ijeN to any subset A~N, AI'·0. Extensions of interaction indices in this sense 
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have been proposed by Grabisch [14] and Roubens [66], with respect to Shapley 
index and Banzhaf index, respectively. 

The Shapley interaction index of elements from A~ is defined by 

Is(A)= L (n-IKI-IAj)!IKI! L (-I)IAj-~IJ.l(LuK). 
K~N-A (n-IAI+l)! L~A 

The Banzhaf interaction index of elements from A~N is defined by 

In addition to the interaction indices, another concept useful for the 
interpretation of the fuzzy measures is the Mobius representation of J.l, i.e. the set 
function m: P(N)~R defined by 

m(A)= L(-dA-B!J.l(B) 
B~A 

for any A~. Within Dempster-Shafer theory of evidence [72], m(A) is interpreted 
as basic probability assignment. 

The relations between fuzzy measures J.l, interaction indices Is and IB and 
Mobius representation m have been extensively studied in [15, 6, 66, 16]. 

Interaction indices Is and IB and Mobius repr~sentation m can be used 
within rough set analysis to study the relative value of the information supplied by 
different attributes [23]. Considering the quality of classification as a fuzzy 
measure, we conclude that 

1) the Shapley index c/>s(i) and the Banzhaf index c/>B(i) can be interpreted as 
measures of the contribution of attribute i= I, ... ,n to the quality of 
approximation of the considered classification, 

2) the Murofushi-Soneda interaction index IMS(ij) and Roubens interaction 
index IR(ij) can be interpreted as the average conjoint contribution of the 
non-ordered pair of attributes i,j=l, ... ,n, i~:j, to the quality of classification 
when adjoined to all sets KcC such that K("){ij}=0, 

3) the Shapley interaction index Is(A) and the Banzhaf interaction index IB(A) 
can be interpreted as the average conjoint contribution of the subset of 
attributes AcC to the quality of classification when adjoined to all sets 
BcC such that BM=0, 

4) the MObius representation m(A) of J.l can be interpreted as the conjoint 
contribution of the subset of attributes ~C to the quality of classification. 
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All of these indices can be useful to study the informational dependence among the 
considered attributes and to choose the best reducts. 

14.1.7 An example 

The following example (based on Pawlak [62]) illustrates the concepts introduced 
above. In Table 14.1, six warehouses are described by means of four attributes: 

• A\, capacity of the sales staff, 
• A2, perceived quality of goods, 
• A3, high traffic location, 
• ~, warehouse profit or loss. 

The components of the information table S are: U={1,2,3,4,5,6}, Q={AI,A2,A3,~}, 
VJ={high, medium, low}, V2={good, medium}, V3={no, yes}, V4={profit, loss}, 
the information function f(x,q), taking values f(l,AI)=high, f(I,A2)=good, and so 
on. 

Table 14.1 Information table of the illustrative example 

Warehouse Al A2 A3 ~ 
1 high good no ij)l'ofit 
2 medium medium no loss 
3 medium medium no I profit 
4 low medium no loss 
5 medium good yes loss 
6 high medium yes I profit 

Observe that each warehouse has a different description in terms of the 
attributes A\, A2, A3 and ~, so that they can be distinguished (discerned) by means 
of the information supplied by the attributes considered. Formally, the 
indiscernibility relation based on all four attributes is 
~=«1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} and, therefore, there is no two distinct 
warehouses x and y such that (x,y)eIQ• However, warehouses 2 and 3 are 
indiscernible in terms of the attributes from P={AJ,A2,A3}, since they have the same 
values on the three attributes. Formally, the indiscernibility relation based on Pis, 
thus, Ip={ (1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(5,5),(6,6)}. Similarly, warehouses 2, 3 
and 4 are indiscernible with reference to the attributes of P'={A2, A3}, and so on, 
considering all the possible subsets of attributes from Q. 

Each P~Q determines a partition UIIp that groups in the corresponding 
equivalence classes the objects having the same description in terms of the 
attributes from P: e.g., for P'={A2,A3}, Ullpo={{I},{2,3,4},{5},{6}}, and thus, 
{I}, {2,3,4}, {5}, {6} are the P'-elementary sets. 

Suppose that, using the set of attributes P={AJ,A2,A3}, we wish to 
approximate the set X of warehouses which have made a profit, i.e., X={1,3,6}. 
Since UIIp={ {1},{2,3},{4},{5},{6}}, the result is 

~(X) = {1,6}, «:X) = {1,2,3,6}, Bnp(X) = {2,3}. 
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The answer to the question whether it is possible to describe X by means of 
the information supplied by the attributes from P is not unique. Observe that the P
boundary Bnp(X) is not empty: warehouses 2 and 3, belonging to the P-boundary 
have the same description in terms of attributes considered, but warehouse 2 has 
suffered a loss while warehouse 3 has made a profit. Nevertheless, the P-lower 
approximation of X, ~(X), is also not empty and it consists of warehouses 1 and 6, 

whose descriptions are different from those of all the warehouses not belonging to 
X. Summing up, in intuitive terms, it may be said that, on the basis of the 
information supplied by the attributes from P: 

• warehouses 1 and 6, from the P-Iower approximation of X, certainly belong to 
the set of warehouses that make a profit, 

• warehouses 1,2,3 and 6, from the P-upper approximation of X, could belong to 
the set of warehouses that make a profit, 

• warehouses 2 and 3, from the P-boundary of X, represent cases of uncertain 
membership to the set of warehouses that make a profit. 

Approximating the set Y of warehouses which have made a loss, i.e. 
Y={2,4,5}, using again the set of attributes P={A},A2,A3}, the result is 

-
~(Y) = {4,5}, P(Y) ={2,3,4,5}, Bnp(Y) = {2,3}. 

Let us consider now the following subsets of Q: P={A},Az,A3}, 

R={A},A2}' T={AJ,A3}, W={A2,A3}. It is easy to observe that IR=lp, IrIp, while 
Iw:;t:Ip. This means that Rand T are reducts of P, while W is not. In other words, R 
and T are minimal subsets of P that induce the same partition of the elements of U 
as the set of attributes P. It can also be observed that in the core of P, defined by 
Rtl T, there is attribute A}, which is then indispensable for the approximation of the 
class of warehouses that make a profit (and also for the class of warehouses that 
make a loss), while other attributes from R and T may be mutually exchanged. 

If in the set of attributes Q, condition attributes C={ A},A2,A3} and decision 
attribute D={At} were distinguished, the information table could be seen as a 
decision table. In order to explain the evaluations of the decision attribute by means 
of the evaluations of the condition attributes, one can represent the information table 
as a set of decision rules. Such a representation of Table 14.1 gives the following 
rules: 

1) ijf(x,A})=high and f(x,A2)=good and f(X,A3)=nO, then f(x,At)=profit (or, in 
linguistic terms, "if the capacity of the sales staff is high and the perceived 
quality of goods is good and the location is not in high traffic conditions, then 
the warehouse makes a profit"), 

2) iff(x,A})=medium and f(x,A2)=medium and f(x,A3)=no, then f(x,At)=loss, 
3) ijf(x,A})=medium and ftx,A2)=medium and f(x,A3)=no, then f(x,At)=profit, 
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6) iff{x,A})=high and f{x,A2)=medium and f(x,A3);:yes, then f(x,At)=profit. 
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The above set of rules may then be reduced by induction, obtaining a more concise 
representation of the decision table (within parantheses there are the objects 
supporting the corresponding rules): 

I') iff(x.AI)=high, then f(x.At)=profit, 

2') iff(x.AI)=low, then f(x.At)=loss, 

3') iff(x.AI)=medium and f(x,A2)=good, then f(x.At)=loss, 

(1,6) 

(4) 

(5) 

4') iff(x,AI)=medium and f(x,A2)=medium, then f(x,At)=profit or loss. (2,3) 

Observe that rules I'), 2') and 3') have a univocal consequence and 
therefore these are exact rules, while rule 4') does not have a univocal consequence 
and for this reason it is an approximate rule. 

Finally, quality of approximation, interaction indices Is and IB and MObius 
representation of all subsets of attributes in C were calculated. Their values are 
presented in Table 14.2. 

Table 14.2 Quality of approximations, MObius representation and 
interaction indices 

Attributes Quality Mobius Shapley Banzhaf 
{AI} 0.5 0.5 0.44 0.5 
{A2} 0 0 0.11 0.17 
J A3} 0 0 0.11 0.17 
{A),A2 } 0.67 0.17 -0.17 -0.17 
{AI,A3J 0.67 0.17 -0.17 -0.17 
{A2,A3} 0.5 0.5 0.17 0.17 
{AI,A2,A3} 0.67 -0.67 -0.67 -0.67 

The results represented in Table 14.2 can be interpreted as follows: 
1) the second column shows the quality of approximation for the considered 

subset of attributes; 
2) the third column presents the Mobius representation and gives a measure of the 

conjoint contribution of the corresponding set of attributes to the quality of 
classification. The negative value corresponding to {A),A2,A3} should be read 
as a measure of the redundancy in the information from conjoint contribution of 
the three attributes; 

3) the fourth column shows the Shapley interaction index: more precisely the first 
three values are the Shapley values and can be interpreted as measures of the 
importance of the corresponding attributes in the rough approximation. One can 
notice a relatively great importance of AI with respect to A2 and A3. 
Furthermore A2 and A3 are complementary, while AI and A2, as well as AI and 
A3, are substitutive. Finally there is redundancy between A), A2 and A3 as 
pointed out by the negative value of the corresponding interaction index; 

4) the fifth column presents the Banzhaf interaction index. which has an 
interpretation analogous to the Shapley interaction index. 
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14.1.8 A comparison with the fuzzy sets theory and statistical analysis 

A number of relations exist between the rough sets theory and other mathematical 
theories dealing with particular types of "uncertainty" or, more generally, with 
"imperfect" data. The rough sets have been compared with discriminant analysis, 
fuzzy sets and evidence theory (see [43, 7, 8, 76J). Tables 14.3 and 14.4 below give 
a brief synoptic comparison of the rough set approach with the classic statistical 
analysis and with the fuzzy set approach, respectively (Table 14.3 quotes some 
summary observations of Stefanowski [93]). 

Often the rough set approach is not offered as an alternative, but as a 
complement to other approaches based on different theories or techniques. A 
number of concrete applications have been made using different approaches; the use 
of rough sets has very often proved to be particularly interesting, both for its ability 
of handling raw and even inconsistent data (the notable "poorness" of information 
required) and for the readable results obtained by this approach (reducts, core, 
relevance of the attributes, decision rules) which are useful for decision aiding. 

Let us point out the particularly fruitful complementarity of fuzzy sets 
theory and rough sets theory, which has been acknowledged by a large number of 
studies (see e.g. [7, 8, 60, 86, 89, 90, 103]). Indeed, both theories deal with different 
types of imperfect information which can be encountered together. As to fuzzy sets, 
they deal with a type of imprecision which arises when the boundaries of a class of 
objects are not sharply defined. Informally, a fuzzy set may be regarded as a class in 
which there is a graduality of progression from membership to non-membership or, 
more precisely, in which an object may have a grade of membership intermediate 
between unity (full membership) and zero (non-membership). Three different 
semantics can be associated with the use of fuzzy sets [9]: 

• a first semantics expressing closeness, proximity, similarity and the like; 
under this semantics, objects with membership one are viewed as 
prototypical (referent) objects of the fuzzy set, while the other membership 
grades estimate the closeness of objects (subjects) to the prototypical ones, 

• a second semantics expressing an incomplete or vague state of information 
under the form of possibility distributions; this view of fuzzy sets enables 
imprecise or uncertain information to be processed, 

• a third semantics expressing preferences between pairs of objects; the 
gradedness introduced by the use of fuzzy sets refines the classic crisp 
preference structures. 

In many situations it is required to consider more than one semantics at a time. In 
the following, when using fuzzy sets in conjunction with rough sets, we will 
mention the type of semantics considered. 
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Table 14.3 Statistical analysis versus the classic rough set approach 

Issue Statistical methods ROU2h set approach 

Objectives Identification and estimation Approximation of a 
of parameters of some classification using an 
structural equations in view indiscernibility relation, 
of explaining a classification reduction of superfluous 

attributes, generation of 
decision rules 

Representation of Two-entty table representing Information table 
data a sample 

Types of attributes Quantitative attributes and Qualitative attributes and 
''binarized'' qualitative discretized quantitative 
attributes attributes 

Requirements of The sample must be No requisite; possibility of 
data statistically representative analysing information tables 

and the distribution of of reduced dimensions 
objects in decision classes 
must be well-balanced; 
normal multivariate 
distribution of attribute 
values is assumed 

Operators for data Average values, covariance No operator; the 
aggregation matrices, statistical tests indiscernibility relation 

operates on original data 
Reduction of data Selection of attributes with Reducts of the set of 

the highest discriminating attributes ensuring the same 
potential; typical instrument: quality of classification as 
statistical tests the whole set of attributes 

Final results Discriminant function or Decision rules in the form of 
probabilistic tree classifier logical statements "if .. , 

then. .. " 

14-16 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

Table 14.3 Statistical analysis versus the classic rough set approach 

Issue Statistical methods ROU2h set approach 

Objectives Identification and estimation Approximation of a 
of parameters of some classification using an 
structural equations in view indiscernibility relation, 
of explaining a classification reduction of superfluous 

attributes, generation of 
decision rules 

Representation of Two-entty table representing Information table 
data a sample 

Types of attributes Quantitative attributes and Qualitative attributes and 
''binarized'' qualitative discretized quantitative 
attributes attributes 

Requirements of The sample must be No requisite; possibility of 
data statistically representative analysing information tables 

and the distribution of of reduced dimensions 
objects in decision classes 
must be well-balanced; 
normal multivariate 
distribution of attribute 
values is assumed 

Operators for data Average values, covariance No operator; the 
aggregation matrices, statistical tests indiscernibility relation 

operates on original data 
Reduction of data Selection of attributes with Reducts of the set of 

the highest discriminating attributes ensuring the same 
potential; typical instrument: quality of classification as 
statistical tests the whole set of attributes 

Final results Discriminant function or Decision rules in the form of 
probabilistic tree classifier logical statements "if .. , 

then. .. " 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-17 

Table 14.4 Fuzzy sets versus classic rough sets 

Issue Fuzzy sets Rou2h sets 

Semantics of Closeness (similarity), Inconsistency or ambiguity 
uncertainty incomplete state of following from granularity 
(imperfect information (imprecision) of knowledge 
knowledge) or degree of satisfaction 

(preference) 

Additional Context-dependent Discretization (if necessary) 
information membership functions of quantitative attributes; the 

specifYing the degree of degree of membership of an 
membership of an object to object to a set can be 
a set calculated from available 

information 

Mathematical Sets with soft boundaries; Family of partitions 
modeling generalization of consisting of classes of 

characteristic function of indiscermble objects; use of 
sets, of binary relation and these partitions for 
of logical operators to approximation of a given set 
continuum or classification; dependence 

and reduction of attributes 

"Exact", using the "Approximate", using the 
Processing of membership functions lower and upper 
uncertainty approximations 

Main preoccupation, Levels of grey (degrees of Size of the pixels 
for example in membership) (granularity) 
image processin2 

14.2 Generalization of the indiscernibility relation 

As mentioned above, the classic definitions of lower and upper approximations 
have been introduced with reference to the binary indiscernibility relation, which is 
an equivalence relation. In this case, both the sets to be approximated and the 
relation used are ordinary (crisp). 

A generalization, consisting in approximation of fuzzy sets with a fuzzy 
indiscernibility relation, was proposed by Dubois and Prade [7, 8]. Nevertheless, 
this approach is still based on the use of the indiscernibility relation. 

Of particular interest are the proposals to use, instead of the indiscernibility 
relation, similarity relation, weaker than that of indiscernibility, since in the least 
demanding case it requires reflexivity only, relaxing the assumptions of symmetry 
and transitivity (see [9, 92]). 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-17 

Table 14.4 Fuzzy sets versus classic rough sets 

Issue Fuzzy sets Rou2h sets 

Semantics of Closeness (similarity), Inconsistency or ambiguity 
uncertainty incomplete state of following from granularity 
(imperfect information (imprecision) of knowledge 
knowledge) or degree of satisfaction 

(preference) 

Additional Context-dependent Discretization (if necessary) 
information membership functions of quantitative attributes; the 

specifYing the degree of degree of membership of an 
membership of an object to object to a set can be 
a set calculated from available 

information 

Mathematical Sets with soft boundaries; Family of partitions 
modeling generalization of consisting of classes of 

characteristic function of indiscermble objects; use of 
sets, of binary relation and these partitions for 
of logical operators to approximation of a given set 
continuum or classification; dependence 

and reduction of attributes 

"Exact", using the "Approximate", using the 
Processing of membership functions lower and upper 
uncertainty approximations 

Main preoccupation, Levels of grey (degrees of Size of the pixels 
for example in membership) (granularity) 
image processin2 

14.2 Generalization of the indiscernibility relation 

As mentioned above, the classic definitions of lower and upper approximations 
have been introduced with reference to the binary indiscernibility relation, which is 
an equivalence relation. In this case, both the sets to be approximated and the 
relation used are ordinary (crisp). 

A generalization, consisting in approximation of fuzzy sets with a fuzzy 
indiscernibility relation, was proposed by Dubois and Prade [7, 8]. Nevertheless, 
this approach is still based on the use of the indiscernibility relation. 

Of particular interest are the proposals to use, instead of the indiscernibility 
relation, similarity relation, weaker than that of indiscernibility, since in the least 
demanding case it requires reflexivity only, relaxing the assumptions of symmetry 
and transitivity (see [9, 92]). 



14-18 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

14.2.1 Similarity 

As observed above, indiscernibility implies an impossibility to distinguish two 
objects of U having the same description in terms of the attributes from Q. This 
relation induces equivalence classes on U, which constitute the basic granules of 
knowledge. In reality, due to the imprecision of data describing the objects, small 
differences are often not considered significant for the purpose of discrimination. 
This situation may be formally modeled by considering similarity or tolerance 
relations (see e.g. [57,46,49,65, 79, 91, 92, 104]). 

In general, the similarity relations R do not generate partitions on U; the 
information regarding similarity may be represented using similarity classes for 
each object xe U. Precisely, the similarity class of x, denoted by R(x), consists of 
the set of objects which are similar to x: 

R(x) = {yeU: yRx}. 

It is obvious that an object yeR(x) may be similar to another object zeU, 
and ZER(x). The similarity relation is of course reflexive (each object is similar to 
itself). Slowinski and Vanderpooten [91, 92] have proposed a similarity relation 
which is only reflexive, relaxing therefore the properties of symmetry and 
transitivity. The abandon of the transitivity requirement is easily justifiable, 
remembering - for example - Luce's paradox of the cups of tea [47]. As for the 
symmetry, one should notice that yRx, which means "y is similar to x", is 
directional; there is a subject y and a referent X, and in general this is not equivalent 
to the proposition "x is similar to y", as maintained by Tversky [1(0). This is quite 
immediate when the similarity relation is defined in terms of a percentage 
difference between evaluations of the actions compared on the attribute at hand, 
calculated with respect to the evaluation of the referent action. Therefore, the 
symmetry of the similarity relation should not be imposed and it makes sense to 
consider the inverse relation of R. denoted by R-1, where xR-1y means again "y is 
similar to x"; R-1(x), xeU, is then the class of referent objects to which x is similar: 

Rl(X) = {yeU: xRy}. 
Given a subset X~U and a similarity relation R on U, an object xeU is 

said to be non-ambiguous in each of the two following cases: 
• x belongs to X without ambiguity, that is xeX and Rl(X~; such 

objects are also called positive; 
• x does not belong to X without ambiguity (x clearly does not belong to 

X), that is xeU-X and Rl(X~U-X (or Rl(X)r0C=0); such objects are 
also called negative. 

The objects which are neither positive nor negative are said to be ambiguous. 

A more general definition of lower and upper approximation may thus be 
offered (see [92]). Let X~U and R a reflexive binary relation defined on U; the 
lower approximation of X, denoted by B(X), and the upper approximation of X, 

denoted by R(X), are defined, respectively, as: 
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B.(X) = {XEU: RI(XX;X}, 

R(X) = UR(x). 
xeX 

It may be demonstrated that the key property: g (x)c;;;X~R (X), still holds 
and that 

g(X) = U-R(U-X) (complementarity property) and 

R(X) = {XEU: R 1(x)flX*0}. 

Moreover, the definitions proposed are the only ones which correctly 
characterize the set of positive objects (lower approximation) and the set of positive 
or ambiguous objects (upper approximation) when a similarity relation is used 
which is reflexive, but not necessarily symmetric nor transitive. 

Using similarity relation one is able to induce decision rules from a 
decision table. The syntax of a rule is the following: 

"iff(x,ql) is similar to rqJ and f(x,<l2) is similar to rq2 and ... f(x,q,) is similar to rqp, 
then x belongs to Yjl orYj2 or ... Y j&.", 

where {q\'<l2, ... ,q,}~, (rq\,rq2, ... ,rqp)EVqIXVq2X ... xVqp and YjI,Yj2, ... ,Yj&. are some 
classes of the considered classification (D-elementary sets). lfk=1 then the rule is 
exact, otherwise it is approximate or uncertain. Procedures for generation of 
decision rules adapt the scheme described in Section 14.1.5. One such procedure 
has been proposed by Krawiec, Slowinski and Vanderpooten [42]. 

14.2.2 Fuzzy similarity 

A further step towards generalization of the rough approximations consists in 
consideringfuzzy reflexive binary relation R(x,y) defined on U, that is a relation of 
fuzzy similarity; using it one can define the lower and upper approximations of a 
fuzzy set [19, 28]. This use of fuzzy sets is concordant with the first semantics, 
according to the typology given in Section 14.1.8. 

To this purpose, negation and the classic connectives of fuzzy logic are 
used in a suitable way, in particular those of the t-norm T as coiUunction, of the t
conorm T* as disjunction and of the appropriate fuzzy negation N (for a brief but 
thorough introduction to fuzzy logic see the first chapter of [13]). The set of the 
positive objects and that of the negative objects with respect to X are fuzzy sets, 
whose membership functions express the credibility of the respective statement: 
"for every yE U, x is not similar to y and/or y belongs to X" and "for every yE U, x 
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statement: "for every yE U, x is not similar to y and/or y belongs to X" and "at least 
one YEU exists such that x is similar to y and y belongs to X". Formally, the two 
respective membership functions are defined as: 
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~(x, !S(X) = T (T*(N(R(x.y», ~x(y))), 
YEV 

~(x,R(X) = T* (T(R(X,y), ~X(y»). 
YEV 

Let us remark that using the definition of the T* -implication (i.e. 

I1.,N (a,b)=T*(N(a),b», 'v'a,bE[O,l]), it is possible to rewrite the definition of 

~(x,!S(X) and ~(x.R(X) in the following way: 

~(x, !S(X) = T (11. N (R(x,y), ~x(y»), 
YEV ' 

~(x.R(X) = T* (N( I1.,N (R(x,y), N(~x(y»»)' 
YEV 

Therefore, ~(x. !S(X) can be interpreted as the credibility of the statement "for 

each yE U, the similarity of x to y implies that y belongs to X", while ~(x.R (X) can 
be interpreted as the credibility of the statement "for at least one yEU, the 
similarity of x to y does not imply that Y does not belongs to X". 

The following definitions are necessary to introduce the next results. A 
strict negation is a strictly decreasing continuous function N:[O,l]~[O,l] satisfying 
N(O)=l, N(l)=O. (T, T*, N) is a De Morgan triplet iff N(T*(x.y)=T(N(x),N(y», 
where N is a strict negation. A negation N is involutive iff for all xE[O,l], 
N(N(x»=x. It may be demonstrated, in particular, that the following properties are 
valid: 

1) ~(x,!S(X) ~ ~x(x) ~ ~x.R(X), 

2) if(T, T*, N) is a De Morgan triplet and N is involutive, then 

~(x,!S(X) = N(~(x.R(U-X), 

where U-X represents the fuzzy set whose membership function, 'v'XEU, has the 
form ~v-x (x) = N(~x(x». 

The above results can be read as follows in the sense of fuzzy sets: 1) 
means that X includes its lower approximation and is included in its upper 
approximation; 2) means that the lower approximation of X is the complement of 
the upper approximation of its complementary set (complementarity property). 

Given set C of attributes, let us consider a fuzzy binary relation Rq for each 
attribute qEC, i.e. a function Rq:UxU~[O,l], where, 'v'X,YEU, Rq(x.y) represents 
the intensity or degree of similarity of x to y with respect to the attribute q. More 
precisely, for qEC and'v'x,y,w,zEU: 

Rq(x,y) = 0 means absence of similarity of x to y, 
Rq(x,y) = 1 means that x is absolutely similar to y, (Rq(x,x)= 1), 
Rq(x,y)~Rq(w,z) means that the similarity of x to Y is at least as 
credible as the similarity of w to z. 

To model the comprehensive similarity of x to YEU with respect to a 
subset of attributes P={qI'Cl2, ... ,C)p}~C, denoted by Rp(x.y), we consider the 
credibility of the statement "x is similar to y with respect to qI and x is similar to y 
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with respect to 'l2 and ... x is similar to y with respect to q,". This credibility is 
calculated as: 

Rp(x,y) = T (Rq(x,y». 
qEP 

Making suitable use of such a fuzzy similarity relation and of the 
approximations defined above, it is possible to induce decision rules having the 
same syntax as the rules considered in Section 14.2.1. Contrary to the previous case, 
decision rules have, in general, different degrees of credibility. 

14.3 Rough sets and multiattribute deciSions 

As mentioned above, a decision table contains all the information relative to a set of 
objects, described by a certain number of attributes. The traditional rough set 
analysis of such a table consists in approximating the classifications induced by 
decision attributes by means of the classifications induced by condition attributes. 
These two kinds of classifications are built independently, i.e. they are not deduced 
one from the other. 

The aim of the decision analysis is to answer the following two basic 
questions. The first question is to explain decisions in terms of the circumstances in 
which they were made. The second is to give a recommendation how to make a 
decision under specific circumstances. Recommendation is mainly based on 
decision rules induced from a decision table. In this sense, the rough set approach is 
similar to the inductive learning approach; however, the former one is going far 
beyond the latter, because, in the rough set approach, the recommendation task is 
preceded by the explanation, which gives pertinent information useful for decision 
support (reducts, core, quality of approximation, relevance of attributes). 

According to Roy [67], it is possible to distinguish the following three, 
most frequent decision problems: 

classification, 
choice, 
ranking. 

In general, decisions are based on some characteristics of actions (objects). 
For example, when buying a car, the decisions can be based on such characteristics 
as price, maximum speed, fuel consumption, color, country of production, etc. We 
refer to these characteristics calling them attributes. Let us observe that, depending 
on interpretation given to the attributes by the OM, some of them may have ordinal 
properties expressing preference scales, while others may not. The former attributes 
are called criteria, while the latter ones keep the name of attributes. In the above 
example, price, maximum speed and fuel consumption are criteria, because, usually, 
a low price is better than a high price; most probably, color and country of 
production are not criteria but simple attributes, because, usually, red is not better 
than green, or a car is not better than another, simply because the former is 
produced in a country and the latter in another country. However, one can imagine 
that also those attributes could become criteria, because a OM could consider, for 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCOM 14-21 

with respect to 'l2 and ... x is similar to y with respect to q,". This credibility is 
calculated as: 

Rp(x,y) = T (Rq(x,y». 
qEP 

Making suitable use of such a fuzzy similarity relation and of the 
approximations defined above, it is possible to induce decision rules having the 
same syntax as the rules considered in Section 14.2.1. Contrary to the previous case, 
decision rules have, in general, different degrees of credibility. 

14.3 Rough sets and multiattribute deciSions 

As mentioned above, a decision table contains all the information relative to a set of 
objects, described by a certain number of attributes. The traditional rough set 
analysis of such a table consists in approximating the classifications induced by 
decision attributes by means of the classifications induced by condition attributes. 
These two kinds of classifications are built independently, i.e. they are not deduced 
one from the other. 

The aim of the decision analysis is to answer the following two basic 
questions. The first question is to explain decisions in terms of the circumstances in 
which they were made. The second is to give a recommendation how to make a 
decision under specific circumstances. Recommendation is mainly based on 
decision rules induced from a decision table. In this sense, the rough set approach is 
similar to the inductive learning approach; however, the former one is going far 
beyond the latter, because, in the rough set approach, the recommendation task is 
preceded by the explanation, which gives pertinent information useful for decision 
support (reducts, core, quality of approximation, relevance of attributes). 

According to Roy [67], it is possible to distinguish the following three, 
most frequent decision problems: 

classification, 
choice, 
ranking. 

In general, decisions are based on some characteristics of actions (objects). 
For example, when buying a car, the decisions can be based on such characteristics 
as price, maximum speed, fuel consumption, color, country of production, etc. We 
refer to these characteristics calling them attributes. Let us observe that, depending 
on interpretation given to the attributes by the OM, some of them may have ordinal 
properties expressing preference scales, while others may not. The former attributes 
are called criteria, while the latter ones keep the name of attributes. In the above 
example, price, maximum speed and fuel consumption are criteria, because, usually, 
a low price is better than a high price; most probably, color and country of 
production are not criteria but simple attributes, because, usually, red is not better 
than green, or a car is not better than another, simply because the former is 
produced in a country and the latter in another country. However, one can imagine 
that also those attributes could become criteria, because a OM could consider, for 



14-22 THE USE OF ROUGH SETS AND FUZZY SETS IN MCOM 

instance, red better than green. or the country of production could actually orientate 
hislher preferences. 

Moreover, decisions may be ordinal, because of expressing a preference or 
may not be ordinal. For example, a classification of cars for a catalogue does not 
impose any preference order among the classes (sport cars, family cars, utility cars, 
etc.); however, choice of the best car, or ranking of a set of cars from the best to the 
worst surely impose a preference order. Let us also observe that, depending on 
interpretation given to the classification by the OM, the classes may express a 
preference, so also a classification may be ordinal. For instance, the OM could be 
interested in a classification of cars in three categories: acceptable, probably 
acceptable, non-acceptable. This type of classification is called sorting. 

In the case of any multicriteria and/or multiattribute decision problem, no 
recommendation can be elaborated before the OM provides some preferential 
information suitable to the preference model assumed. 

There are two major models used until now in multicriteria decision 
analysis: functional and relational ones. The functional model has been extensively 
used within the framework of multiattribute utility theory [40]. The relational model 
has its most widely known representation in the form of an outranking relation [68] 
and a fuzzy relation [13]. These models require specific preferential information 
more or less explicitly related with their parameters. For example, in the 
deterministic case, the OM is often asked for pairwise comparisons of actions, from 
which we can assess the substitution rates in the functional model or importance 
weights in the relational model (see [11, 39, 53]). This kind of preferential 
information seems to be close to the natural reasoning of the OM. He/she is 
typically more confident exercising hislher comparisons than explaining them. The 
representation of this information by functional or relational models seems, 
however, less natural. According to Slovic [SO], people make decisions by 
searching for rules that provide good justification of their choices. So, after getting 
the preferential information in terms of exemplary comparisons, it would be natural 
to build the preference model in terms of "if .. , then ... " rules. Then. these rules can 
be applied to a set of potential actions in order to obtain specific preference 
relations. From the exploitation of these relations, a suitable recommendation can be 
obtained to support the OM in decision problem at hand 

The induction of rules from examples is a typical approach of artificial 
intelligence. It is concordant with the principle of posterior rationality by March 
[4S] and with aggregation-disaggregation logic by Jacquet-Lagreze [38]. The rules 
explain the preferential attitude of the OM and enable hislher understanding of the 
reasons of hislher preference. As pointed out by Langley and Simon [45], the 
recognition of the rules by the OM justifies their use for decision support. So, the 
preference model in the form of rules derived from examples, fulfils both 
explanation and recommendation tasks mentioned above. 

In Sections 14.3.2-14.3.4, we are presenting the main extensions of the 
rough set approach, resulting in a new methodology of modeling and exploitation of 
preferences in terms of decision rules. The rules are induced from the preferential 
information given by the OM in the form of examples of decisions. More precisely, 
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for A being a finite set of actions (real or fictitious, potential or not) considered in a 
multicriteria problem, the examples of decisions are confined to a subset of actions 
Bc;;;..A, relatively well known to the DM, called reforence actions. Depending on the 
type of the multicriteria problem, the examples concern either assignment of 
reference actions to decision classes (sorting problem) or pairwise comparisons of 
reference actions (choice and ranking problems). 

14.3.1 Problems of multiattribute classification 

Up to now, the rough set approach to decision analysis has been limited to 
problems of multiattribute classification, consisting in assigning a set of actions 
described by a set of attributes (not criteria) to one of pre-defined categories [63]. 
Rough set analysis is naturally adapted to this type of problems, because the set of 
classification examples may be represented directly in the decision table and it is 
possible to extract all the essential knowledge contained in the table using 
indiscernibility or similarity relations. 

The rough sets theory has been successfully applied to a number of real 
classification problems in different fields, such as medicine, pharmacology, 
engineering, credit management, market research, financial analysis, environmental 
economics, linguistics, databases and other important sectors. The interesting results 
obtained have recently induced experts in various disciplines to become involved in 
the study of the theory and its implementation. For a collection of studies on the 
application of the rough set llR>l"oach to real-world problems see [84]. A brief but 
thorough review of the most important applications has recently been made by 
Pawlak [62]. 

14.3.2 Problems of multicriteria sorting 

As pointed out by Greco, Matarazzo and Slowinski [18], the original rough set 
approach cannot extract all the essential knowledge contained in the decision table 
of multicriteria sorting problems, i.e. problems of assigning a set of actions 
described by a set of criteria to one of pre-defined and ordered categories. 
Notwithstanding, in many real problems it is important to consider the ordinal 
properties of the considered criteria. For example, in bankruptcy risk evaluation, if 
the debt index (total debts/total activity) of company A has a modest value, while 
the same index of company B has a significant value, then, within the rough set 
approach, the two firms are just discernible, but no preference is given to one of 
them with reference to the attribute "debt ratio". In reality, from the point of view of 
the bankruptcy risk evaluation, it would be advisable to consider firm A better than 
firm B, and not simply different (discernible). Therefore, the attribute "debt ratio" is 
a criterion. Let us observe that the rough set approach based on the use of 
indiscernibility or similarity relations is not able to capture a specific kind of 
inconsistency which may occur when in the decision table there is at least one 
criterion. For instance, in the bankruptcy risk evaluation, which is a sorting 
problem, if firm A is better than B with respect to all the considered criteria (e.g. 
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debt ratio, return on equity, etc.) but firm A is assigned to a class of higher risk than 
B, then there is an inconsistency which cannot be captured by the original rough set 
approach, because these finns are discernible. In order to detect this inconsistency, 
the rough approximation should handle the ordinal properties of criteria. This can be 
made by replacing the indiscerrubility or similarity relation by the dominance 
relation, which is a very natural concept within multicriteria decision making. 

On the basis of these considerations, Greco, Matarazzo and Slowinski [24] 
have proposed a new rough set approach to multicriteria sorting problems, which is 
described in the next Sections. Let also mention that it is sometimes reasonable to 
consider both criteria and attributes (without ordered domains) in a sorting 
problems. More precisely a rough set approximation based on a binary relation 
which is partly of dominance (with respect to considered criteria) and partly of 
indiscernibility (with respect to considered attribute) has been proposed [26]. More 
generally, a binary relation which is partly of dominance, partly of indiscernibility 
and partly of similarity can be considered [33]. 

14.3.2.1 Appronmation by means of dominance relations 

Let Sq be an outranking relation [67] on U with reference to criterion qeC, such that 
xSq)' means "x is at least as good as y with respect to criterion q". Suppose that Sq is 
a complete preorder, that is a strongly complete and transitive binary relation. 
Moreover, let CI = {CIt, teT}, T = {1, ... ,n}, be a set of classes ofU, such that each 
xeU belongs to one and only one class ClteCi. We assume that 'v'r,seT, such that 
r>s, each element of Clr is preferred (strictly or weakly [67]) to each element of CI •. 
More formally, if S is a comprehensive outranking relation on U, i.e. xSy means: "x 
is at least as good as y" 'v'x,yeU, then it is supposed that 

[xeClr , yeCI., r>s]=>[xSy and not ySx). 

Let us also consider the following upward and downward cumulated sets, 
respectively, 

.~t 

cli = UC1,.. 
s,;;t 

Observe that CIt = CI! =U, CI! =Cln and clf =CI1. 

It is said that x dominates y with respect to p!;;C (denotation xDpy) if xSq)' 'v'qeP. 
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~(CI~)={xeU: Dt(x) ~Cl:}, 

P(Cl~) = UD;(x). 
XECI~ 

Analogously, we define the P-Iower and the P-upper approximation of cli, 
teT, with respect to P~C (denotation ~(CI~) and P(CI~), respectively), as: 

~(CI~)={xeU:Dp(x) ~Cli}, 

P(Cl~) = UD;(x). 
xEClf 

The P-Iower and P-upper approximations so defined satisfy the following 
properties VteT and VP~C: 

~(CI~ )~CI~ ~P(CI~), 

~(Cl~)~Cl~ ~P(CI~). 

Furthennore, the following specific complementarity properties hold: 

~(Cl~ ) =U- P(Cl~_I) , t=2, ... ,n, 

~(Cl~)=U-P(Cl~+l)' t=l, ... ,n-l, 

P(CI~) =U-~(Cltl) , t=2, ... ,n, 

P(CI~)=U-~(Cl~+l)' t=l, ... ,n-l. 

The P-boundaries (p-doubtful regions) of CI~ and Cl~ are defined as 

Bnp( CI~ )= P(CI~) -~(Cli) , 
Bnp( CI~ )= P(CI~) - ~(Cl~) . 

We define the accuracy of approximation of cli and Cl~, VteT and 

VP~C, respectively, as: 

~ 1~(Cli)1 
(X,p (Cit) = I I ' 

p(Cli) 

< 1~(Clr)1 
(x'p(Clt) = I \. 

P(Clr) 

The ratio 

IU -(L~Bnp(Cli ))uL~Bnp(CI~ )))\ 
Yp(CI)= lUi 

defines the quality of approximation of the partition CI by means of the set of 
attributes P, or, briefly, quality of sorting. This expresses the relation between all 
the P-correctly classified objects and all the objects in the table. 

Every minimal subset P~C such that Y p (CI) = y C (CI) is called a reduct of 
C with respect to CI and is denoted by Redc.(p). Again, an information table may 
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have more than one reduct. The intersection of all the reducts is known as the core, 
denoted by COreet. 

14.3.2.2 Decision rules 

On the basis of the approximations obtained by means of the dominance relations, it 
is possible to induce a generalized description of the preferential information 
contained in the decision table in terms of decision rules. 

Assuming that for each qeC, Vq£;R (i.e. Vq is quantitative) and for each 
x,yeU f(x,q)~(y,q) implies xSq}' (i.e. Vq is ordered), the following three types of 
decision rules can be considered: 
1) decision rules of the type~, which have the following form: 

if f(x,ql):=:rql and f(x,'I2):=:rq2 and ... f(x,q,):=:rqp. then xe CI~ , 

where P={ql, CI2, ... q, }~C, (rqJ,rq2, ...• rqp)eVqlxVq2x ... xVqpand teT; these rules 
are supported only by actions from the P-Iower approximations of the classes 
CI~; 

2) decision rules of the type D~. which have the following form: 

if f(x,'b)Yql andf(x,~q2 and ... f(x,q,)Yqp. then xeClf. 

where P={qJ, 'I2, ... q, }~C. (rqJ,rq2 •...• rqp)eVqlxVq2X ... xVqp and teT; these rules 
are supported only by actions from the P-Iower approximations of the classes 
Clf; 

3) decision rules of the type~, which have the following form: 

if f(x,ql):=:rql and f(X,CI2):=:rq2 and... f(x,q0:=:rqk: and f(x,~I)YqkH and ... 
f(x,q,)Y.." then xeClf or xeCI;, 

where O'={qI. CI2 •... CJJ< }~. O"={~J, 'lk+2, ... q" }~, P=O'vO", 0' and 0" 
not necessarily disjoint, (rqJ,rq2, ... , rqp)eVqlxVq2X ... xVqp. s,teT such that t<s; 
these rules are supported only by actions from the P-boundaries of the classes 
clf and CI;. 

If for some qeC Vq is not quantitative then the syntax of the above rules 
can easily extended, referring directly to the order induced by Sq on Vq. 

Let us observe that the set of decision rules induced from the 
approximations defined using dominance relations gives, in genera~ a more 
synthetic representation of knowledge contained in the decision table than the set of 
rules induced from classic approximations defined using indiscernibility relations. 
The minimal sets of rules thus obtained have a smaller number of rules and use a 
smaller number of conditions. Moreover, the application of these rules to new 
objects gives better results, in general. This is due to the more general syntax of the 
rules (n~" and n~" are used instead of "="). 

14.3.2.3 An example 
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Let us apply the rough approximation by dominance relation to the same decision 
table as considered in Section 14.1.7. Within this approach we approximate the 
class clf of the warehouses "at most making loss" and the class CI~ of the 
warehouses "at least making profit". Since only two classes are considered, we have 
clf=CII and cli=Clz. As previously, C={AJ, Az, A3} and D={~}. In this case we 

must observe, however, that AI. Az and A3 are criteria. It means that 

- with respect to AI. "high" is better than "medium" and "medium" is better than 
"low", 

- with respect to Az, "good" is better than "medium", 

- with respect to A3, "yes" is better than "no". 

The domain of ~ is trivially ordered too. 

The C-Iower approximations, the C-upper approximations and the C

boundaries of sets cli and cli are equal, respectively, to: 

~(Cli)={4}, C(Cli)={2, 3, 4, 5}, Bnc(Cli )={2, 3, 5}, 

~(Cli)={I, 6}, C(Cli)={l, 2, 3, 5, 6}, Bnc(Cli)={2, 3, 5}. 

Therefore, the accuracy of the approximation is 0.25 for clf and 0.4 for 

CI~ , while the quality of sorting is equal to 0.5. There is only one reduct which is 

also the core, i.e. Redel (C) = Corea (C) ={AI}. 

The following minimal set of decision rules can be obtained from the 
considered decision table (within parentheses there are the actions supporting the 
corresponding rules): 

1) iff(x, AI) is at least high, then xe Cli (1,6) 

2) iff(x, AI) is at most low, then xe clf (4) 

3) iff(x, AI) is at least medium and f(x, AI) is at most medium (i.e. f(x, AI) is 
medium), then XE clf or xe CI~ (2, 3, 5) 

14.3.2.4 Comparison of the results 

The advantages of the rough set approach based on the dominance relation over the 
original rough set approach based on the indiscernibility relation are summarized 
below. 

The results of the approximation are more satisfactory. This improvement 
is represented by a single reduct ({ Al }), while from the indiscernibility approach we 
obtain two reducts ({AI. Az} and {AJ,A3}). Let us observe that, even if the quality 
of the approximation obtained by dominance (0.5) is smaller than the quality of 
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approximation by indiscernibility (0.67), this is another point in favor of the new 
approach. In fact, this difference is due to the warehouses 3 and 5. Let us notice that 
warehouse 5 dominates warehouse 3, i.e. warehouse 5 is at least as good as 
warehouse 3 with respect to all the three criteria, however, 5 has a comprehensive 
evaluation worse than 3. Therefore, this can be interpreted as an inconsistency 
revealed by the approximation based on dominance, that cannot be captured by the 
approximation based on indiscernibility. 

Moreover, let us remark that the decision rules induced from 
approximations defined using dominance relations give a more synthetic 
representation of knowledge contained in the decision table. The minimal set of 
decision rules obtained from the dominance approach has a smaller number of 
stronger rules (3 against 4) and uses a smaller number of conditions (3 against 6). 
Furthermore, let us observe that some rules obtained from the original rough set 
approach make problems with their interpretation. For example, rule 3') obtained by 
the original rough set approach says that "if the capacity of the sale staff is medium 
and the perceived quality of goods is good, then the warehouse makes loss". One 
would expect that a warehouse of lower quality, e.g. a warehouse with the same 
capacity of the sales staff but with a medium quality of goods, should still make 
loss. Surprisingly, warehouse 3 has these characteristics and, nevertheless, it makes 
profit. 

14.3.2.5 Approximations by means of fuzzy dominance relations 

The concept of dominance can be refined by introducing gradedness through the use 
of fuzzy sets in the sense of the third semantics, according to the typology given in 
1.8 [29]. , 

Let Sq be a fuzzy outranking relation on U with respect to criterion qeC, 
i.e. Sq:UxU~[O,I], such that Sq(x,y) represents the credibility of the proposition "x 
is at least as good as y with respect to criterion q". Suppose that Sq is a fuzzy partial 
T-preorder, i.e. that it is reflexive (Sq(x,x)=1 for each xeU) and T-transitive 
(T(Sq(x,y),Sq(Y,Z»:5;Sq(x,z), for each x,y,ze U) (see [13]). USing the fuzzy 
outranking relations Sq, qeC, aJuzzy dominance relation on U (denotation Op(x,y» 
can be defined for each ~C as follows: 

Dp(x,y) = T (Sq(x,y». 
qeP 

Given (x,y)eUxU, Dp(x,y) represents the credibility of the proposition "x 
outranks y with respect to each criterion q from P". 

Since the fuzzy outranking relations Sq are supposed to be partial T
preorders, then also the fuzzy dominance relation Dp is a partial T -preorder. 

Furthermore, let CI={CIt, teT}, T={I, ... ,n}, be a set of fuzzy classes in U, 
such that for each xeU, Clt(x) represents the membership function of x to CIt. We 
suppose that the classes of CI are increasingly ordered, i.e. that 'lfr,seT, such that 
r>s, the elements of Clr have a better comprehensive evaluation than the elements of 
CI.. For example, in a problem of bankruptcy risk evaluation, CII is the set of 
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unacceptable risk firms, Clz is the set of high risk finns, Ch is the set of medium 
risk finns, and so on. 

On the basis of the membership functions of the fuzzy class CIt, we can 
define fuzzy membership functions of two other sets: 

1) the upward cumulated fuzzy set Clf, whose membership function Clf (x) 
represents the credibility of the proposition "x is at least as good as the objects in 
CIt", 

Clf (X)={ 1 
CIt (x) otherwise (i.e. if 'VsET such that s>t CIs (x) =0) 

if 3s E T : CIs (x) > 0 and s > t 

2) the downward cumulated fuzzy set clf, whose membership function clf (x) 
represents the credibility of the proposition "x is at most as good as the objects in 
CIt", 

Clf (x)= { 1 
CIt (x) otherwise (i.e. if 'Vs E T such that s < t CIs (x) = 0) 

if 3s E T : CIs (x) > 0 and s < t 

The P-Iower and the P-upper approximations of Clf with respect to P~C 

are fuzzy sets in U, whose membership functions (denotation ~[CIf (x)] and 

P [ Clf (x)]) are defined as: 

~[CI:(x)] = T (T*(N(Dp(y,x», Clf (y»), 
yEU 

P[Cl:(x)] = T* (T(Dp(x,y), Clf (y»). 
yEU 

~[Cl:(x)] represents the credibility of the proposition "for all yEU, Y does not 

dominate x with respect to criteria from P and/or y belongs to Clf ", while 

P[CI:(x)] represents the credibility of the proposition "there is at least one YEU 

dominated by x with respect to criteria from P which belongs to Clf ". 

The P-Iower and P-upper approximations of Clf with respect to P~C 

(denotation ~[Cl:(x)] and P[CI:(x)]) can be defined, analogously, as: 

~[Cl:(x)]= T (T*(N(Dp(x,y», Clf(y»), 
yEU 

P[C~(x)] = T* (T(Dp(y,x), Clf(Y»). 
YEU 

~[Cl:(x)] represents the credibility of the proposition "for all yEU, x does not 

dominate y with respect to criteria from P and/or y belongs to clf", while 

P[CI:(x)] represents the credibility of the proposition "there is at least one YEU 

dominating x with respect to criteria from P which belongs to clf ". 
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Let us retnaIk that using the definition of the T* -implication, it is possible 

to rewrite the definition of £[C~(x)], P[C~(x)], £[Ct:(x)] and P[CI~(x)] in the 

following way: 

£[CI~(x)] = T (l1!.N (Dp(y,x), clf (y»), 
yEU 

P[CI~(x)] = T* (N(l1!.N (Dp(x,y), N(Clf (y»»). 
YEU 

£[CI~(x)] = T (l1!.N (Dp(x,y), cli(Y»), 
YEU 

P[CI~(x)] = T* (N(l1!.N (Dp(y,x), N(Cli(Y»))). 
yEU 

The following results can be proved: 

I) £[CI~(x)] ~clf (x)~P[Cl~(x)], for each xeU and for each teT, 

2) £[Ct:(x)] ~Clf (x)~P[Ct:(x)], for each xeU and for each teT, 

3) if (f, TO, N) constitute a De Morgan triplet, if negation N is involutive and if 
N( clf (X»=CI~_t (x) for each xeU and t=2, ... ,n, then 

£[C~(x)] = N(P[C(t(x)], t=2, ... n, 

£[Ct:(x)] = N(P{CI:+t (x)]), t=1, ... ,n-l, 

P[CI~(x)] = N(BCI~t (x»)), t=2, ... n, 

P[Ct:(x)] = N(£[C~+t(x»)), t=1, ... ,n-l. 

Results I) to 3) can be read as the fuzzy counterparts of the following results well
known within the classic rough set approach: I) says that clf includes its P-Iower 
approximation and is included in its P-upper approximation; 2) has an analogous 

interpretation with respect CIL 3) (complementarity property) says that the p

lower (p-upper) approximation of Clf is the complement of the P-upper (p-Iower) 

approximation of its complementary set CI~-l (analogous property holds for Clf ). 

14.3.3 Multicriteria choice and ranking problems 

As pointed out above, the use of rough sets in the past has been limited to problems 
of multiattribute classification only. In Section 14.3.2, we presented an extension of 
the rough set approach to the multicriteria sorting problem. In the case of 

14-30 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

Let us retnaIk that using the definition of the T* -implication, it is possible 

to rewrite the definition of £[C~(x)], P[C~(x)], £[Ct:(x)] and P[CI~(x)] in the 

following way: 

£[CI~(x)] = T (l1!.N (Dp(y,x), clf (y»), 
yEU 

P[CI~(x)] = T* (N(l1!.N (Dp(x,y), N(Clf (y»»). 
YEU 

£[CI~(x)] = T (l1!.N (Dp(x,y), cli(Y»), 
YEU 

P[CI~(x)] = T* (N(l1!.N (Dp(y,x), N(Cli(Y»))). 
yEU 

The following results can be proved: 

I) £[CI~(x)] ~clf (x)~P[Cl~(x)], for each xeU and for each teT, 

2) £[Ct:(x)] ~Clf (x)~P[Ct:(x)], for each xeU and for each teT, 

3) if (f, TO, N) constitute a De Morgan triplet, if negation N is involutive and if 
N( clf (X»=CI~_t (x) for each xeU and t=2, ... ,n, then 

£[C~(x)] = N(P[C(t(x)], t=2, ... n, 

£[Ct:(x)] = N(P{CI:+t (x)]), t=1, ... ,n-l, 

P[CI~(x)] = N(BCI~t (x»)), t=2, ... n, 

P[Ct:(x)] = N(£[C~+t(x»)), t=1, ... ,n-l. 

Results I) to 3) can be read as the fuzzy counterparts of the following results well
known within the classic rough set approach: I) says that clf includes its P-Iower 
approximation and is included in its P-upper approximation; 2) has an analogous 

interpretation with respect CIL 3) (complementarity property) says that the p

lower (p-upper) approximation of Clf is the complement of the P-upper (p-Iower) 

approximation of its complementary set CI~-l (analogous property holds for Clf ). 

14.3.3 Multicriteria choice and ranking problems 

As pointed out above, the use of rough sets in the past has been limited to problems 
of multiattribute classification only. In Section 14.3.2, we presented an extension of 
the rough set approach to the multicriteria sorting problem. In the case of 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-31 

multicriteria choice and ranking problems we need further extensions, because the 
decision table in its original form does not allow the representation of preference 
relations between actions. 

To handle binary relations within the rough set approach, Greco, 
Matarazzo and Slowinski [17] proposed to operate on, so-called, pairwise 
comparison table (PC1), i.e., with respect to a choice or ranking problem, a 
decision table whose objects are pairs of actions for which multicriteria evaluations 
and a comprehensive preference relation are known. 

The use of an indiscernibility relation on the PCT makes problems with 
interpretation of the approximations of the preference relation and of the decision 
rules derived from these approximations. Indiscernibility permits handling 
inconsistency, which arrives when two pairs of actions have preferences of the same 
strength on considered criteria, however, the comprehensive preference relations 
established for these pairs are not the same. When we deal with criteria, there may 
arrive also another type of inconsistency connected with the dominance principle: on 
a given set of criteria, one pair of actions is characterized by some preferences and 
another pair has all preferences at least of the same strength, however, for the first 
pair we have a comprehensive preference and for the other - an inverse 
comprehensive preference. This is why the indiscernibility relation is not able to 
handle all kinds of inconsistencies connected with the use of criteria. For this reason, 
another way of defining the approximations and decision rules has been proposed, 
which is based on the use of graded dominance relations. 

14.3.3.1 The pairwise comparison table 

Let C be the set of criteria used for evaluation of actions from A For any criterion 
qeC, let Tq be a finite set of binary relations defined on A on the basis of the 
evaluations of actions from A with respect to the considered criterion q, such that 
'1(x,y)eAxA exactly one binary relation teTq is verified. More precisely, given the 

domain Vq of qeC, ifv'q,v"qeVq are the respective evaluations of x,yeA by means 

of q and (x,y)et, with teTq, then for each w,zeA having the same evaluations 

v'q,v"q by means of q, (w,z)et. For interesting applications it should be 

card(Tq)~' '1qeC. Furthermore, let Td be a set of binary relations defined on set A 
(comprehensive pairwise comparisons) such that at most one binary relation 
teTd is verified '1(x,y)eAxA 

The preferential information has the form of pairwise comparisons of 
reference actions from Br;;;A., considered as examples of decision. The pairwise 
comparison table (PeT) is defined as information table SPCT=(B, Cu{d}, TcuTd' 

g), where Bc;;BxB is a non-empty set of exemplary pairwise comparisons of 
reference actions, Tc= U Tq, d is a decision corresponding to the comprehensive 

qEC 

pairwise comparison (comprehensive preference relation), and 
g:Bx(Cu{d})~TcuTd is a total function such that g[(x,y),q]eTq '1(x,y)eAxA 
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and \iqeC, and g[(x,y),d]eTd \i(x,y)eB. It follows that for any pair of reference 

actions (x,y)eB there is verified one and only one binary relation teTd. Thus, Td 

induces a partition of B. In fact, information table SPIT can be seen as decision 
table, since the set of considered criteria C and decision d are distinguished. 

We assume that the exemplary pairwise comparisons provided by the DM 
can be represented in terms of graded preference relations (for example "very weak 
preference", "weak preference", "strict preference", "strong preference", "very 
strong preference") ~: \iqeC and \i(x,y)eAxA, 

Tq = {~, heHq}, 

where Hq is a particular subset of the relative integers and 

x~y, h>O, means that action x is preferred to action y by degree h with respect to 

the criterion q, 

x~y, h<O, means that action x is not preferred to action y by degree h with respect 

to the criterion q, 

x P~ y means that action x is similar (asymmetrically indifferent) to action y with 

respect to the criterion q. 

Let us remarlc that P~ is the same similarity relation as presented in Section 

14.2.1 in very general terms, i.e. without any specific reference to preference 
modeling. Within the preference context, the similarity relation, even if not 
symmetric, resembles indifference relation. Thus, in this case, we call this similarity 
relation "asymmetric indifference". 

Of course, \iqeC and \i(x,y)eAxA, [x~y, ~]<=> [YP! x, tc:;;O]. 

The set of binary relations Td may be defined in a similar way, but xI1 y 

means that action x is comprehensively preferred to action y by degree h. 

Technically, the modeling of the binary relation ~, i.e. the assessment of 

h, can be organized as follows: 
- first, it is observed that for any qeC there exists a function cq: A~R which is 

increasing with respect to the preferences on q (the evaluations of cq depend on 
the evaluations of the total function f(x,q), more precisely f(x,q)= f(y,q) implies 
cq(x)=cq(y» 

- then, it is possible to define a function kq: R2 ~R which measures the strength 
0/ the preference (positive or negative) of x over y (e.g. 
kq[cq(x),Cq(y)]=Cq(x)-Cq(Y»; it should satisfy the following properties \ix,y,zeA: 

i) Cq(x)>Cq(y)<=>~[Cq(x),Cq(z)]> kq[cq(y),cq(z)], 

ii) Cq(x)>Cq(y)<=>kq[cq(z),Cq(x)]< kq[ciz),cq(y)], 
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iii) Cq(x)=cq(y)~kq[cq(x),Cq(y)]=O, 

- next, the domain of kq can be divided into intervals, using a suitable set of 
thresholds Aq, \fqeC; these intervals are numbered in such a way that 
kq[cix),cq(y)]=O belongs to interval no. 0, 

- the value of h in the relation x~ y is then equal to the number of interval 

including kq[cix),cq(y)], for any (x,y)eAxA 

Actually, property iii) can be relaxed in order to obtain a more general 
preference model which, for instance, does not satisfy preferential independence 
[40]. 

We are considering a PeT where the set T d is composed of two binary relations 
defined on A: 

1) x outranks y (denotation xSy or (x,y)eS), where (x,y)eB, 
2) x does not outranky (denotation xScy or (x,y) eSC), where (x,y)eB, 

and Susc=B, where "x outranks y" means "x is at least as good as y" [67]; observe 
that the binary relation S is reflexive, but neither necessarily transitive nor 
complete [68, 3]. 

14.3.3.2 Approximation by means of graded dominance relations 

Let Hp = nHq , \fP~C. Given P~C and heHp, \f(x,y)eAxA it is said that x 
qEP 

positively dominates y by degree h with respect to criteria from P iff x P~q Y with 

fq~h, \fqeP. Analogously, \f(x,y)eAxA, x negatively dominates y by degree h with 
respect to criteria from P iff xP~qy with fqs;h, \fqeP. Therefore, each P~C and 

heHp generate two binary relations (possibly empty) on A called positive P
dominance by degree h (denotation D!p) and negative P-dominance by degree h 

(denotation D~p), respectively. They satisfy the following conditions: 

(PI) if(x,y)eD!p, then(x,y)eD~R foreachR~and~; 

(P2) if(x,y)eD~, then(x,y)eD~R foreachR~andleh. 

Greco, Matarazzo, Slowinski [18] have proposed to approximate the 
outranking relation S by means of the dominance relation D!p. Therefore, S is 
considered a rough binary relation (see [17]). 

The P-Iower approximation of S (denotation ~(S» and the P-upper 

approximation of S (denotation P (S» are defined, respectively, as: 

~(S) = U {(D!pnB)~S}, 
hEHp 

P(S) = n {(D!pnB);2S}. 
hEHp 
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Remembering (PI), r. (S) may be interpreted as the dominance relation 

D!p having the largest intersection with B included in the outranking relation S, 

and P (S) as the dominance relation D!p including S and having the smallest 

intersection with B. 

Analogously, it is possible to approximate the relation SC by means of the 

dominance relation D~p. Observe that, in general. the definitions of the 

approximations of S and SC do not satisfy the co.!!dition of complementarity, i.e. it is 
not true, in general. that r. (S) is equal to B-P (SC) and that r. (SC) is equal to 

B-P (S); this is because Sand SC are approximated using two different relations, 

D!p and D~, respectively. Nevertheless, the approximations thus obtained 
constitute a good basis for the generation of simple decision rules. 

14.3.3.3 Decision roles 

It is possible to represent the preferential information contained in a given PCT in 
terms of decision rules. Since approximations of S and SC were made using graded 
dominance relations, it is possible to induce decision rules being propositions of the 
following type: 
1) D++-decision rule, which is a proposition of the type: if XD!py, then xSy, 

2) D+.-decision rule, which is a proposition of the type: if not xD!pY, then xscy, 

3) D .... -decision rule, which is a proposition of the type: if not XD~p y, then xSy, 

4) D_-decision rule, which is a proposition of the type: ifxD~p y, then xSCy, 

where P is a non-empty subset of C. Therefore, for example, a D++-decision rule is a 
proposition of the type: "if x positively dominates y by degree h with respect to 
criteria from P, then x outranks y". 
A constructive definition of these rules may be given, being a logical implication 
supported by the existence of at least one pair of actions from B satisfying one of 
the four propositions listed above, and by the absence of pairs from B contradicting 
it. Thus, for example, if 

- there exists at least one pair (w,z)eB such that WD!pz and wSz and 

- there does not exist any pair (v,u)eB such that VD!pu and vScu, 

- then "ifxD!py, then xSy" is accepted as a D++- decision rule. 

A D++-decision rule "ifxD!py, then xSy" is said to be minimal if there 

does not exist any rule "ifxD~R y, then xSy" such that Rg> and k!;h. Analogous 

definitions hold for the other cases. In other words, a minimal decision rule is an 
implication for which there is no other implication whose premise is of at least the 
same weakness and whose consequence is of at least the same strength. 

The following results show connections of the decision rules with the p
lower and P-upper approximations of S and SC [18]: 

1) for "ifxD!py, then xSy" being a Dwminimal decision rule, r.(S) =D!pflB, 
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1) for "ifxD!py, then xSy" being a Dwminimal decision rule, r.(S) =D!pflB, 
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2) for "ifxD~p y, then xSV' being a D_-minimal decision rule, ~ (S~) = D~p nB, 

3) for "ifnotxD!pY, then xSV' being a D+_-minimal decision rule, P(S) =D!pnB, 

4) for "ifnotxD~ y, then xSy" being a D-+-minimal decision rule, P(S~)=D~pnB. 

14.3.3.4 Application of tbe decision rules and final recommendation 

In order to obtain a recommendation in the choice or ranking problems with respect 
to a set of actions M~A, the decision rules induced from the approximations of S 
and So (defined with respect to reference actions from B) should be applied on set 
MxM. The application of the rules to any pair of actions (u, v)eMxM establishes the 
presence (uSv) or the absence (uSCv) of outranking with respect to (u, v). More 
precisely, 

1) from D++-decision rule "if XD!pY, then xSy" and from UD!pv, one 
concludes uSv, 

2) from D+_-decision rule "if not xD!pY, then xScy" and from not 

UD!p v, one concludes uS"v, 

3) from D.;--decision rule "if not XD~p y, then xSy" and from not UD~p v, 
one concludes uSv, 

4) from D_-decision rule "ifxD~p y, then xS~" and from UD~ v, one 
concludes uS"v. 

After the application of the decision rules to each pair of actions 
(u,v)eMxM, one of the following four situations may occur: 

- uSvandnotuS"v, that is true outranking (denotation uSTv), 
- uS~v and not uSv, that isfalse outranking (denotation uSFv), 
- uSv and uScv, that is contradictory outranking (denotation usl<y), 
- not uSv and not uScv, that is unknown outranking (denotation uSuv). 

The four above situations, which together constitute the so-called four
valued outranking (see [97, 9S]), have been introduced to underline the presence 
and absence of positive and negative reasons for the outranking. Moreover, they 
make it possible to distinguish contradictory situations from unknown ones. 

The following theorem underlines the operational importance of the 
minimal decision rules [IS]: the application of all the decision rules obtained for a 
given SPCT to a pair (u,v)eMxM results in the same outranking relations S and S~ as 
those obtained from the application of the minimal decision rules only. Therefore, 
the set of the minimal decision rules totally characterizes the preferences of the DM 
contained in SPCT. 

A final recommendation can be obtained upon a suitable exploitation of the 
presence and the absence of outranking S and S~ on M. A possible exploitation 
procedure consists in calculating a specific score, called Net Flow Score, for each 
actionxeM: 
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where 
S++(x) = l{yeM: there is at least one decision rule which affirms xSy} I, 
S+-(x) = l{yeM: there is at least one decision rule which affirms ySx}i, 
S-+(x) = l{yeM: there is at least one decision rule which affirms ySCx }I, 
S-(x) = l{yeM: there is at least one decision rule which affirms xS"y} I. 

The recommendation in ranking problems consists of the total preorder 
determined by Snt<x) on M; in choice problems it consists of the action(s) x*eM 
such that Sru(x*)= max Sru(x). 

xeM 

The procedure described above has been recently characterized with 
reference to a number of desirable properties [34, 35]; moreover, a thorough 
axiomatic analysis of this and other exploitation procedures used to obtain a 
recommendation in choice and ranking problems has been carried out by Greco, 
Matarazzo and Slowinski [21). 

14.3.3.5 Multigraded dominance 

The graded dominance relation introduced in Section 14.3.3.2 assumes a common 
grade of preference for all the considered criteria. While this permits a simple 
calculation of the approximations and of the resulting decision rules, it is lacking in 
precision A dominance relation allowing a different degree of preference for each 
considered criterion (multigraded dominance) gives a far more accurate picture of 
the preferential information contained in the pairwise comparison table Spero 

More formally, given P~C (P;t0), (x,y),(w,z)eAxA, (x,y) is said to 
dominate (w,z) taking into account the criteria from P (denotation (x,y)Op(w,z» if 
x is preferred to y at least as strongly as w is preferred to z with respect to each 
qeP. Precisely, "at least as strongly as" means "by at least the same degree", i.e. 
hq~, where hq,kqelIq, xp:",y and w~q z, V'qeP. Let D{q) be the dominance 

relation confined to the single criterion qeP. The binary relation D{q) is reflexive 
«x,y)D{q) (x,y), V'(x,y) e Ax A), transitive «x,y)D{q)(w,z) and (w,z)D{q)(u,v) imply 
(x,y)D{q) (u,v), V'(x,y),(w,z),(u,v) e Ax A), and complete «x,y)D{q)(w,z) and/or 
(w,z)D{q)(x,y), V'(x,y),(w,z)eAxA). Therefore, D{q) is a complete preorder on AxA 
Since the intersection of complete preorders is a partial preorder and Op= nD{q} , 

qeP 

P~C, then the dominance relation Op is a partial preorder on AxA 

Let R~C and (x,y),(u, v)eAxA; then the following implication holds: 

(x,y)Op(u, v) => (x,y)~(u, v). 

Given P~C and (x,y)eAxA, let us introduce the positive dominance set 
(denotation D;(X,y» and the negative dominance set (denotation Dp (x,y»: 

D;(X,Y) = {(w,z)eAxA: (w,z)Op(x,y)}, 

Dp(X,y) = {(w,z)eAxA: (x,y)Op(w,z)}. 
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Using the dominance relation J)p, it is possible to define P-lower and P-upper 
approximations of the outranking relation S with respect to P~C, respectively, as: 

~(S) = {(x,y)eB: D;(x,y)~S}, 

peS) = UD;(x,y). 
(x,y)ES 

Analogously, it is possible to define the approximations of Sc: 

~(SC) ={(x,y)eB: Dp (x, y) ~SC}, 

P(SC) = UDp(x,y). 
(x,y)Es' 

It may be proved that 

~(S)~~P (S), 
~ (SC)~SC~P (SC). 

Furthermore, the following complementarity properties hold: 

~ (S) = B-P (Sj, P (S) = B-~ (SC), 

~(Sj = B-P(S), P(Sj = B-~(S). 

The P-boundaries (p-doubtful regions) of Sand SC are defined as 

Bnp(S)=P(S)- ~(S), Bnp(SC)=P(SC) _~(SC). 
It is possible to prove that BDp(S)=Bnp(Sj. 

The concepts of accuracy, quality of approximation, reducts and core can 
be extended also to the approximation of the outranking relation by multigraded 
dominance relations. In particular, the accuracy of approximation of Sand SC by 
P~C are defined, respectively, by the ratios: 

The coefficient 

_I~(S)I c _I~(SC )1 
ap(S)--I_ I' ap(S) -1- I' peS) P(SC) 

"(p 
I~(S) v ~(S C )1 

IBI 
defines the quality of approximation of S and SC by P~C. It expresses the ratio of 
all pairs of actions (x,y)eB correctly assigned to S and SC by the set P of criteria to 
all the pairs of actions contained in B. Each minimal subset P'~ such that "{p. =YP 
is called a reduct ofP (denotation Reds(P». Let us remark that SPCT can have more 
than one reduct. The intersection of all reducts is called the core (denotation 
Cores(P». 

Using the approximations defined above, it is then possible to induce a 
generalized description of the preferential information contained in a given SPCT in 
terms of suitable decision rules. The syntax of these rules is based on the concept of 
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upward cumulated preferences (denotation p~h) and downward cumulated 

preferences (denotation ~h), having the following interpretation: 

xp~hy means "x is preferred to y with respect to q by at least degree h", 

xp~hy means "x is preferred to y with respect to q by at most degree hit. 

Exact definition of the cumulated preferences, for each (x,y)eAxA, qeC and 
heHq, is the following: 

xp~hy ifx~y, where keHq and Ieh, 

Xp:hy if x~y, where keHq and k$h. 

Using the above concepts, three types of decision rules can be obtained: 
I) D;o, -decision rules, being statements of the type: 

if xp~r('11)y and Xp:~('12)y and ... xP:!'('IP)y, then xSy, 

where P={ql,q2, ... ,qp }~C and (h(ql),h(q2), ... ,h(qp»eHqlxHq2x ... xHqp; these 
rules are supported by pairs of actions from the P-Iower approximation of S 
only; 

2) D~-decision rules, being statements of the type: 

if xp:r('11)y and Xp:~('12)y and ... xp:('IP)y, then xS"y, 

where P={ql,q2, ... ,qp }~C and (h(ql),h(q2), ... ,h(qp»eHqlxHq2x ... xHqp; these 
rules are supported by pairs of actions from the P-Iower approximation of So 
only; 

3) D~-decision rules, being statements of the type: 

if xp:r('11)y and Xp:~('12)y and ... xP:i'(qk)y and xp:if+1)y and ... xp:('IP)y, 

then xSy or xScy, 
where O'={ql,q2, ... ,qk }~, 0"={qk+l,qk+2, ... ,qp }~C, P=O'uO", 0' and 
0" not necessarily disjoint, (h(ql),h(q2), ... ,h(qp»eHqlxHq2x ... xHqp; these rules 
are supported by actions from the P-boundary of S and SC only. 

14.3.3.6 Dominance without degrees of preference 

The degree of graded preference considered in Section 14.3.3.1 is defined on a 
quantitative scale of the strength of preference kq, qeC. However, in many real 
world problems, the existence of such a quantitative scale is rather questionable. 
Roy [70] distinguishes the following cases: 

• preferences expressed on an ordinal scale: this is the case where the 
difference between two evaluations has no clear meaning; 

• preferences expressed on a quantitative scale: this is the case where the 
scale is defined with reference to a unit clearly identified, such that it is 
meaningful to consider an origin (zero) of the scale and ratios between 
evaluations (ratio scale); 

• preferences expressed on a numerical non-quantitative scale: this is an 
intermediate case between the previous two; there are two well-known 
particular cases: 
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• interval scale, where it is meaningful to compare ratios between differences 
of pairs of evaluations, 

• scale for which a complete preorder can be defined on all possible pairs of 
evaluations. 
The preference scale has also been considered within economic theory (e.g. 

[74]), where cardinal utility is distinguished from ordinal utility: the former deals 
with a strength of preference, while, for the latter, this concept is meaningless. From 
this point of view, preferences expressed on an ordinal scale refer to ordinal utility 
while preferences expressed on a quantitative scale or a numerical non-quantitative 
scale deal with cardinal utility. 

The strength of preference kq and, therefore, the graded preference 
considered in Section 14.3.3.1, is meaningful when the scale is quantitative or 
numerical non-quantitative. If the information about kq is non-available, then it is 
possible to define a rough approximation of S and SC using a specific dominance 
relation between pairs of actions from AxA. defined on an ordinal scale represented 
by evaluations cq(x) on criterion q, for xeA [30]. Let us explain this latter case in 
more details. 

Let CO be the set of criteria expressing preferences on an ordinal scale, and 
CN, the set of criteria expressing preferences on a quantitative scale or a numerical 
non-quantitative scale, such that COuCN=C and COncN=0. Moreover, for each 
P~C, we denote by pO the subset of P composed of criteria expressing preferences 
on an ordinal scale, i.e. pO=PnCo, and pN the subset of P composed of criteria 
expressing preferences on a quantitative scale or a numerical non-quantitative scale, 
i.e. pN=PncN. Of course, for each P~, we have p=pNupO and pO ~=0. 

If p=pN and pO=0, then the definition of dominance is the same as in the 
case of multigraded dominance (Section 14.3.3.5). If p=pO and pN=0, then, given 
(x,y),(w,z)eAxA. the pair (x,y) is said to dominate the pair (w,z) with respect to P 
if, for each qeP, Cq(x)~Cq(w) and Cq(z)~Cq(y). Let D{q} be the dominance relation 
confined to the single criterion qepo. The binary relation D{q} is reflexive 
«x,y)D{q}(x,y), V(x,y)eAxA), transitive «x,y)D{q}(w,z) and (w,z)D{q}(u,v) imply 
(x,y)D{q}(u,v), V(x,y),(w,z),(u,v)eAxA), but non-complete (it is possible that not 
(x,y)D{q}(w,z) and not (w,z)D{q}(x,y) for some (x,y),(w,z)eAxA). Therefore, D{q} is 
a partial preorder. Since the intersection of partial preorders is also a partial 
preorder and])p= nD{q} , p=pO, then the dominance relation])p is also a partial 

qEP 

preorder. 

If some criteria from P!;;C express preferences on a quantitative or a 
numerical non-quantitative scale and others on an ordinal scale, i.e. if pN*0 and 
pO*0, then, given (x,y),(w,z)eAxA. the pair (x,y) is said to dominate the pair (w,z) 
with respect to criteria from P, if (x,y) dominates (w,z) with respect to both pN and 
pO. Since the dominance relation with respect to pN is a partial preorder on AxA 
(because it is a multigraded dominance) and the dominance with respect to pO is 
also a partial preorder on AxA (as explained above), then also the dominance ])p, 
being the intersection of these two dominance relations, is a partial preorder. In 
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(x,y)D{q}(u,v), V(x,y),(w,z),(u,v)eAxA), but non-complete (it is possible that not 
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preorder. 
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consequence, all the concepts introduced in the previous point can be restored using 
this specific definition of dominance relation. 

Using the approximations of S and So based on the dominance relation 
defined above, it is possible to induce a generalized description of the available 
preferential information in terms of decision rules. These decision rules are of the 
same type as the rules already introduced in the previous Section; however, the 
conditions on criteria from CO are expressed directly in terms of evaluations 
belonging to domains of these criteria. Let Cq={cq(x), xeA}, qeCo. The decision 
rules have in this case the following syntax: 
1) D~ -decision rule, being a statement of the type: 

if X~f(ql)y and ... x~!(qe)y and Cq~I(X)~q~1 and Cq<*I(y)~S~1 and ... 

cqp(x)~qp and cqp(y)~sqp, then xSy, 
where P={ql, ... ,qp}!;;C, pN={ql, ... ,qe}, pO={qe+I, ... ,qp}, 
(h(ql), ... ,h(qe»eHqlx ... xIlqe and (rq~h ... ,rqp), (¥J, ... ,Sqp)eCq<*lx ... XCqp; these 
rules are supported by pairs of actions from the P-Iower approximation of S 
only; 

2) D ,,;-decision rule, being a statement of the type: 

if Xp:~(ql)y and ... x~c:(qp) y and Cq~I(X)g~1 and Cqct+-I(y~1 and ... 

cqp(x)gqp and cqp(y)~, then xS"y, 
where P={ql, ... ,qp}!;;C, pN={ql, ... ,qe}, pO={qe+l, ... ,qp}, 
(h(ql), ... ,h(qe»eHqI x ... xHqe and (rqct+-J, ... ,rqp), (sq<*J, ... ,s..,)eCq<*1 x ... xCqp; these 
rules are supported by pairs of actions from the P-Iower approximation of So 
only; 

3) D~-decision rule, being a statement of the type: 

ifxp~~(q,)y and ... x~,:(qe)y andx~!l10+1)y ... x~(qf)y and CqtH(X)~qIH and 

Cqft-I(y)~Sqft-1 and ... cqg(x)~'l8 and Cqg(y)~ and cqg+l(x)gqg+-1 and Cqg+-I(y)~Sqg+1 
and ... cqp(x)gqp and cqp(y)~qp, then xSyor xSOy, 
where O'={ql, ... ,qe}~C, O"={qe+l, ... ,qf}}!;;C, pN=O'uQ", 0' and 0" not 
necessarily disjoint, pO={qf+l, ... ,qp}, (h(ql), ... ,h(qt)eHqlx ... xHqf and 
(rqft-h ... ,rqp),(sqft-J, ... ,sqp)eCqft-Ix ... XCqp; these rules are supported by pairs of 
actions from the P-boundary of S and So only. 

14.3.3.7 An example 

For the illustration of results concerning the problems of multicriteria choice and 
ranking we will use the same example as considered in Section 14.1.7. Firstly, we 
assume that the DM accepts to express preferences with respect to criteria AI, A2, 

A3 on a numerical non-quantitative scale for which a complete preorder can be 
defined on all possible pairs of evaluations. According to this assumption, in order 
to build the PCT, as described in Section 14.3.3.1, the DM specifies sets of possible 
degrees of preference; for example, HI ={-2,-1,O,I,2}, H2 ={-I,O,I}, H3 ={-l,O,l}. 
Therefore, with respect to AI, we have the following preference relations pt : 
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- x Pi y (and y p12 x), meaning that x is preferred to y with respect to At, if 

f(x,A1)=high and f(y,A1)=low, 

- xP~ y (and YP11 x), meaning that x is weakly preferred to y with respect to AI. if 

f(x,A1)=high and f(y,A1)=medium or f(x,A1)=medium and f(y,A1)::=low, 

- xp~y (and yp~x), meaning that x is indifferent to y with respect to At, if 

f(x,A1)=f(y,A1). 

Analogously, with respect to A2 and A3, we have the following preference relations 

~ and~: 

- xP~ y (andypz1 x), meaning that x is weakly preferred to y with respect to A2, if 

f(x,A2)=good and f(y,A2)=medium, 

- xP~ y (and YP~ x), meaning that x is indifferent to y with respect to A2, if 

f(x,A2)=f(y,A2), 

- xp~y (andYPi l x), meaning that x is weakly preferred to y with respect to A3, if 

f(x,A3)=yes and f(y,A3)=nO, 

- xp~y (and yp~x), meaning that x is indifferent to y with respect to A3, if 

f(X,A3)=f(y,A3). 

As to the comprehensive preference relation, the OM considers that, given 
two different warehouses x,yeU={1,2,3,4,5,6}, ifx makes profit andy makes loss, 
then xSy and yScx. Moreover, the OM accepts xSx for each warehouse x. As to 
warehouses x and y which both make profit or both make loss, the OM abstains 
from judging whether xSy or xScy. Therefore, the set of exemplary pairwise 
comparisons supplied by the OM is B={(I,I), (1,2), (1,4), (1,5), (2,1), (2,2), (2,3), 
(2,6), (3,2), (3,3), (3,4), (3,5), (4,1), (4,3), (4,4), (4,6), (5,1), (5,3), (5,5), (5,6), (6,2), 
(6,4), (6,5), (6,6)}. 

At this stage, we are able to build the PCT, shown in Table 14.5. 

Table 14.5 Pairwise comparison table 

Pairs ~ 11 ~ Outranking 

(1,1) 0 0 0 S 
(1,2) 1 1 0 S 
(1,4) 2 1 0 S 
(1,5) 1 0 -1 S 
(2,1) -1 -1 0 SC 

(2,2) 0 0 0 S 
(2,3) 0 0 0 So 
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(2,6) -1 0 -1 SC 
(3,2) 0 0 0 S 
(3,3) 0 0 0 S 
(3,4) 1 0 0 S 
(3,5) 0 -1 -1 S 
(4,1) -2 -1 0 SC 
(4,3) -1 0 0 SC 

(4,4) 0 0 0 S 
(4,6) -2 0 -1 SC 

(5,1) -1 0 1 SC 

(5,3) 0 1 1 SC 

(5,5) 0 0 0 S 
(5,6) -1 1 0 SC 
(6,2) 1 0 1 S 
{6,4) 2 0 1 S 
(6,5) 1 -1 0 S 
(6,6) 0 0 0 S 

The C-lower approximations, the C-upper approximations and the C
boundaries of S and SC obtained by means of multigraded dominance relations are 
as follows: 

~ (S) = {(1,2),(1,4),(l,5),(3,4),(6,2),(6,4),(6,5)}, 

C (S)= { (1,1 ),( 1,2),( 1,4),( 1,5),(2,2),(2,3),(3,2),(3,3 ),(3, 4),(3,5),(4,4),(5,3 ),( 5,5), 
(6,2),(6,4),(6,5),(6,6) }, 
~ (SC) = {(2, 1),(2,6),(4,1 ),(4,3),(4,6),(5,1 ),(5,6)}, 

C (SC)={ (1,1 ),(2,1),(2,2),(2,3),(2,6),(3,2),(3,3),(3,5),(4, 1),(4,3),(4,4),(4,6),(5,1), 
(5,3),(5,5),(5,6),(6,6)}, 

Bnc(S) = Bnc(SC) = {(I, 1),(2,2),(2,3),(3,2),(3,3),(3,5),(4,4),(5,3),(5,5), (6,6)}. 

Therefore, the accuracy of the approximation is equal to 0.41 for S and also 
for SC, while the quality of approximation is equal to 0.58. There is only one reduct 
which is also the core, i.e. Reds(C)""Cores(C)={AI}. 

Finally, we obtain the following decision rules (within parentheses there 
are the pairs of actions supporting the rule): 
1) ifXpt'l y, then xSy (or, in simple words, ifx is at least weakly preferred to y 

with respect to AI. then x outranks y), «1,2),(1,4),(1,5),(3,4),(6,2),(6,4),(6,5», 
2) ifXPf-1 y, then xscy (or, in simple words, ify is at least weakly preferred to x 

with respect to AI, then x does not outrank y), 
«2,1),(2,6),(4,1),(4,3),(4,6),(5,1),(5,6», 

3) ifxpt'°y and xPfOy (i.e. jfxP~Y), then xSy or xScy (or, in simple words, ifx 
is indifferent with y with respect to AI, then x outranks y or x does not outrank 
y), « 1, 1 ),(2,2),(2,3),(3,2),(3,3),(3,5),( 4,4),(5,3),(5,5),(6,6». 
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Let us assume now that the DM accepts to express preferences with respect 
to criteria A], A2, A3 on an ordinal scale of preference for which there is only 
information about a partial preorder on all possible pairs of evaluations. In this case, 
Sand SC can be approximated in the way described in Section 14.3.3.6, i.e. without 
considering degrees of preference. The C-Iower approximations, the C-upper 
approximations and the C-boundaries of S and SC are as follows: 

~ (S) = {(l, 1),(1,2),(1,4),{1,5),(3,4),{4,4),(6,2),{6,4),{6,5),{6,6)}, 

C (S)={ {I, 1 ),(1 ,2),( 1,4 ),( 1,5),{2,2),{2,3),{3 ,2),{3,3),{3, 4 ),(3 ,5),{ 4,4),( 5,3),{ 5,5),{ 6,2), 
(6,4),(6,5),(6,6)} , 
~ (SC) = {(2,1),(2,6),(4,1),(4,3),(4,6),(5,1),(5,6)}, 

C (SC)={ (2, 1 ),{2,2),(2,3),(2,6),(3,2),(3 ,3),(3,5),(4, 1),(4,3),(4,6),(5,1 ),(5,3),(5,5),(5,6)}, 
Bnc(S) = Bnc(Sj = ({2,2),{2,3),(3,2),{3,3),{3,5),{5,3),(5,5)}. 

Let us observe that the pairs (1,1), (4,4) and (6,6) belong now to the C
lower approximation of S and are not contained in the C-boundaries. Therefore, the 
accuracy of the approximation is equal to 0.59 for S and to 0.5 for SC, while the 
quality of approximation is equal to 0.71. There is still only one reduct which is also 
the core, i.e. again Reds{C)=Cores(C)={ AI}. The dominance relation with respect to 
the reduct {AI}, i.e. the partial preorder on set B, is presented graphically by a 
Hasse diagram, together with approximations of S and SC, in Figure 14.1. 

The following decision rules are induced from the above approximations 
and boundaries (within parentheses there are the pairs of objects supporting the 
rule): 

1) iff(x,AI) is at least high and f(y,AI) is at most high, then xSy, 
((I, 1),(1,2),(1,4),(1,5),(6,2),(6,4),(6,5),(6,6», 

2) iff(x,Al) is at least low and f(y,AI) is at most low, then xSy, 
«1,4),(3,4),(4,4),(6,4», 

3) if f(x,AI) is at most medium and f(y,AI) is at least high, then xscy, 
«2, 1),(2,6),(4, 1),(4,6)(5,1 ),(5,6», 

4) if f(x,A}) is at most low and f(y,AI) is at least medium, then xscy, 
«4,1),(4,3),(4,6» 

5) iff(x,AI) is at least medium and f(y,A}) is at most medium and f(x,A}) is at 
most medium and f(y,A}) is at least medium, (i.e. if f(x,A1) is equal to 
medium and f(Y,A}) is equal to medium), then xSy or xscy, 
«2,2),(2,3),(~ , .. (,(3,3),(3,5),(5,3),(5,5». 
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[1,4,S],[6,4,S] 

[1,2,S],[1,5,SJ /(hi9h'l~ 
[6,2,SJ,[6,5,SJ ~ [3,4,S] 

(high, medium) (medium,low) 

/ \

.. [3,2,S] [3,5,SJ ...... / \ 

[1,1,S],[6,6,SJ [2,2,SJ [3,3,SJ 1s,5,s]. [4,4,S] 

(hi9h,\. B~f:'~~;':'::~S'1°~)~~~ 
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credibility of the statement "x is preferred to y with respect to criterion q by degree 
h". 

In this case, according to the typology given in Section 14.1.8, the use of 
fuzzy sets for representation of graded preference relations is concordant with the 
second and the third semantics together, because we are in the presence of a vague 
state of information about the strength (degree) of preference. As to the use of fuzzy 
sets for representation of outranking relation, it is concordant with the third 
semantics. 

Using an appropriate definition of the fuzzy multigraded dominance 
relation, built on the basis of fuzzy graded preference ~ , fuzzy outranking relations 

Sand SC can be approximated. More precisely, rough approximations of Sand SC 

are defined using a fuzzy positive dominance (denotation 0; «x,y),(w,z» and a 

fuzzy negative dominance (denotation OJ; «x,y),(w,z», respectively, which are the 

fuzzy counterparts of sets 0; (x,y) and Op (x,y) introduced in Section 14.3.3.5 to 
approximate crisp relations S and SC. 

Let us present step by step the process of building a fuzzy multigraded 
dominance satisfying some desirable properties. 

First, on the basis of the fuzzy graded preference ~(x,y), qEC, the fuzzy 

upward cumulated preference (denotation p~h(x,y» and the fuzzy downward 

cumulated preference (denotation p:h (x,Y» are defined as follows: 

1) the fuzzy upward cumulated preference p~h: AxA~[O,I], such that 

\i(x,y)EAxA, p~h(X,y) is the credibility of the statement "x is preferred to y 

with respect to q by at least degree h", i.e. 

p~h(X,y)= { h 1 
Pq(x,y) 

if 3kEHq:P~(x,y»0 and k>h 

otherwise (i.e. if \ik>h P~(x,y)=O) 

2) the fuzzy downward cumulated preference p:h :AxA~[O, 1], such that 

\i(x,Y)EAxA, p:h(x,y) is the credibility of the statement "x is preferred to y 

with respect to q by at most degree h", i.e. 

pSh(xy)= { 1 
q' h 

Pq(x,y) 

if 3kEHq:P~(x,y»0 and k<h 

otherwise (i.e. if \ik < h P~ (x,Y) = 0) 

Then, the comparison of degrees of fuzzy preference should be defined 
This comparison represents the fuzzy counterpart of the statement "x is preferred to 
y by at least the same degree as w is preferred to z, with respect to qEC". In formal 
terms, for qEC, this corresponding crisp statement is: "~ where x~ y and 

w~ z, h,kEHq" or, in short, "12k, h,kEHq". From a semantic point of view, the 

latter comparison is equivalent to the following set of implications: "ler implies 
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10, for each reHq". Thus, the statement "~ where x~ y and w~ z, h,keHq" is 

equivalent to: "w ~r Z implies x ~r y for each reHq". This set of implications is 

finally expressed in fuzzy terms and its credibility (denotation P; «x,y),(w,z») is 

equal to: 

P; «x,y),(w,z» = T (I~(~r (w,z), ~r (x,y». 
reHq 

Analogously, given (x,y),(w,z)eAxA, the comparison statement "x is 
preferred to y by at most the same degree as w is preferred to z, with respect to 
qeC" is equivalent, in crisp terms, to the set of implications "w ~r Z implies x ~r y 

for each reHq", whose credibility (denotation Pq «x,y),{w,z») is equal to: 

Pq «x,y),{w,z»= T (I~{ ~r (w,z), p~r (x,y»). 
reHq 

The following properties are desirable for P; «x,Y),{w,z» and 

Pq «x,y),{w,z», qeC: 

1) [~r (x,y) ~ ~r (w,z), 'v'reHq] ~ P; ({x,y),(w,z»=I, 

2) [~r (x,y) ~ ~r (w,z), 'v'reHq] ~ Pq ({x,y),{w,z»=I, 

3) P; ({x,y),(w,z» = Pq ({w,z),{x,y», 'v'{x,y),{w,z)eAxA. 

The first two properties represent monotonicity of comparisons with respect to 
cumulated preferences. The third property represents a kind of symmetry of 
comparisons. Property I) says that for each qeC, x is certainly (with credibility equal 
to 1) preferred to y by at least the same degree as w is preferred to z, iff for each reHq 
the fuzzy upward cumulated preference of x over y is not smaller than the fuzzy 
upward cumulated preference of w over z. Property 2) has an analogous interpretation 
with respect to the fuzzy downward cumulated preferences. Property 3) says that for 
each qeC, the credibility of the comparison statement "x is preferred to y by at least 
the same degree as w is preferred to z" equals the credibility of the symmetric 
comparison statement "w is preferred to z by at most the same degree as x is preferred 
toy". 

A sufficient condition for properties I) and 2) is that the fuzzy implication 

1-+ considered in the definition of P; «x,y),{w,z» and Pq «x,y),{w,z» satisfies the 

following requirement, 'v'a,be [0, I]: 

I-+{a,b)=1 ~ aSh. 

The following two conditions are sufficient for property 3): 

- for each heHq -{I}, p~h{x,y) = N{p~h-l (x,y», p~h-l (x,y) = N{p~h{x,y», 

- for each a,be [0, 1], I-+{a,b) = I-+{N{b),N(a». 

The implications of Lukasiewicz and Fodor satisfy the above conditions 
concerning implications (see e.g. [13]). 
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Now, it is possible to define fuzzy positive and fuzzy negative dominance. 
Given (x,y),(w,z)eAxA and Pf;C, let 

D~ «x,y),(w,z» = T P~ «x,y),(w,z», 
qEP 

Di' «x,y),(w,z» = T Pq «x,y),(w,z». 
qEP 

Let us observe that DJ; «x,y),(w,z» represents the credibility of the statement "x is 
preferred to y by at least the same degree as w is preferred to z, taking into account 
all criteria q from pIt, while DF «x,y),(w,z» represents the credibility of the 
statement "x is preferred to y by at most the same degree as w is preferred to z, 
taking into account all criteria q from pIt. 

Finally, the P-lower and the P-upper approximations of S are ~zy sets 
defined on B whose membership functions (denotation ~[S(x,y)) and P[S(x,y))) 
are, respectively: 

~(S(x,y)] = T (T*(N(OJ; «w,z),(x,y»), S(w,z))), 
(w,z)EB 

P[S(x,y)] = T* (T(D~ «x,y),(w,z», S(w,z»). 
(W,z)EB 

~[S(x,y)] represents the credibility of the statement "for all (w,z)eB, (w,z) does not 

dominate (x,y) and/or w outranks zIt, while P[S(x,y)) represents the credibility of 
the statement "there is at least one (w,z)eB such that (x,y) dominates (w,z) and w 
outranks zIt. 

Analogously, the P-Iower and the P-upper approximations of SC are fuzzy 
sets defined on B whose membership functions (denotation ~ [SC(x,y)] and 

P [SC(x,y))) are, respectively: 

~[SC(x,y)] = T (T*(N(Di' «w,z),(x,y))), SC(w,z»), 
(w,z)EB 

P[SC(x,y)] = T* (T(Di' «x,Y),(w,z», SC(w,z»). 
(w,z)EB 

Let us remark that using the ~nition of the T* -implica~n, it is possible 
to rewrite the definition of ~[S(x,y)],P[S(x,y)], ~[SC(x,y)] and P[SC(x,y)] in the 
following way: 

P[S(x,y)] = T (It..N (DJ; «w,z),(x,y», S(w,z»), 
- (w,z}EB' 

P[S(x,y)] = T* (N(It..,N (Dp «x,y),(w,z», N(S(w,z»»), 
(w,z}EB 

P [SC(x,y)] = T (It.. N (OF «w,z),(x,y», SC(w,z))), 
- (w,z)EB' 

P [SC(x,y)] = T* (N( It. N (Op «x,y),(w,z», N(SC(w,z»)))). 
(w,z)EB ' 

It may be proved that if properties 1) and 2) above hold, then 
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~ [S(x,y)]~S(x,y):s;P [S(x,y)], 

~ [SC(x,Y)]S;SC(x,y»~P [SC(x,y)], 

i.e., in terms of the fuzzy inclusion, S and SC include their lower approximation and 
are included in their upper approximation. 

If (T,T·,N) constitutes a De Morgan triplet, N is involutive and property 3) 
above is satisfied, then the following comple~entarity properties hold: 

i) ~[S(x,y)]=N(P[SC(x,y)]), 

ii) P [S(x.y)]=N(~ [SC(x,y)]), 

iii) ~ [SC(x,y)]=N(P [S(x,y)]), 

iv) P [SC(x,y)]=N(~ [S(x,y)]). 

Property i), expressed in terms of a complement of a fuzzy set, means that the lower 
approximation of S is the complement of the upper approximation of the 
complement of S, that is So. Properties ii) to iv) have an analogous interpretation. 

14.3.4 Formal equivalence of decision rule preference models and conjoint 
measurement models 

Traditionally, preferences are modeled using a value function u(·) such that action a 
is at least as good as action b, i.e. aSb, iffu(a)~u(b). This implies that the relation S 
is complete (for each couple of actions a,beA, aSb and/or bSa) and transitive (for 
each triple of actions a,b,ceA, aSb and bSc imply aSc). In a multicriteria context, 
each action a is generally seen as a vector c(a)=(c)(a),c2(a), ... ,Cm(a» of evaluations 
with reference to the m criteria c) (a),c2(a), ... ,Cm(a). It is often assumed that the value 
function is additive (see, e.g., [40] and, for an axiomatic characterization, [41, 
102)), i.e. 

m 
u(a)= ~ u q [cq (a)], 

q=t 

where Uq, q=I, ... ,m, are non-decreasingfunctions. 

The additive and transitive model represented by the additive value 
function is inappropriate in many situations, because: 

• the indifference (the symmetric part of S) may not be transitive, 
• S may not be complete, that is some actions may be incomparable, 
• the compensation between conflicting criteria and the interaction between 

concordant criteria are far more complex than the capacity of representation by 
the additive value function. 

To take these limitations into account, a variety of extensions have been 
proposed (e.g. [99, 12)). Bouyssou and Pirlot [4] have recently proposed a model 
generalizing the previous ones and creating an axiomatic basis to many multicriteria 
decision methods presented in the literature (see, e.g., [71, 101)). This model drops 
additivity, transitivity and completeness properties, and may be written as 
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i) aSb iff F['I'q(cq(a), cq(b», q=1, .. ,m] ~ 0, 

where 'I'q: RZ~R is a non-decreasing function in its first argument and a non
increasing function in its second argument, for q=1, ... ,m, and F: Rm~R is a non
decreasing function in every one of its arguments. Observe that the values assumed 
by the function 'I' q may be interpreted as a measure of the strength of preference of 
a over b with respect to criterion q, q=I, ... ,m. Thus, 'I'q plays the same role as the 
function kq in the definition of the PCT. 

Recently, Greco, Matarazzo and Slowinski [31, 32] have proposed some 
more general models of conjoint measurement. The first model may be written as 
[31]: 

ii) aSb iff G['I' q(cq(a), cq(b», q=1, ... ,k , cq(a), cq(b), q=k+I, ... ,ml ~ 0, 

where the indices of the considered criteria are reordered such that {1, ... ,k} is the 
set of criteria for which the preference is expressed on a quantitative or a numerical 
non-quantitative scale and {k+ 1, ... ,m} is the set of criteria for which the preference 
is expressed on an ordinal scale; 'I'q is defined as above for q=I, ... ,k, and 
G: Rk+Z(m-k)~R is a non-decreasing function in its first k arguments. non-decreasing 
in each (k+'odd') argument ('odd'=1,3, ... ,2(m-k)-I), and non-increasing in each 
(k+'even') argument ('even'=2,4, ... ,2(m-k». Greco, Matarazzo and Slowinski 
proved that model ii) is based on the same axioms as the model i), with the 
exception of an axiom which, for each q=1, ... ,m, introduces a total preorder on the 
set of pairs (cq(a), cq(b», representing the preference strength, with respect to the 
considered criterion, in pairwise action comparisons. More precisely, this axiom is 
accepted only for q=I, ... ,k, i.e. for the set of criteria with a quantitative or a 
numerical non-quantitative preference scale. 

Moreover, Greco, Matarazzo and Slowinski [32] have proposed a model of 
conjoint measurement to represent also some inconsistencies in the preferences. 
This model is based on the concepts of C-Iower and C-upper approximation and of 
C-boundary of S and SC, where C={ 1, ... ,m}. This model can be written as 

iiia) (a,b)e ~(S) iff G['I'q(cq(a), cq(b», q=1, ... ,k, cq(a), Cq(b),q=k+I, ... ,ml ~ tz, 

iiib) (a,b)e ~(SC) iff G['I' q(cq(a), cq(b», q=1, ... ,k , cq(a), cq(b), q=k+l, ... ,m] ::;; tJ, 

iiic) (a,b)eBnc(S) (or, equivalently, (a,b)eBndSC» iff tl < G['I'q(cq(a), 
cq(b», q=1, ... ,k , cq(a), cq(b), q=k+l, .. ,ml < t2, 

where 'I' q and G are defined as above and tJ,tzeR such that tl <t2. With respect to the 
model iiia)-iiic), Greco, Matarazzo and Slowinski proved that it is always possible 
to obtain such a representation, ie. S should not satisfy any specific axiom. 

It is interesting to compare the above models of conjoint measurement with 
the decision rule' preference models resulting from the rough set approach (Sections 
14.3.3.5 and 14.3.3.6). The follOwing results have been proved: 

1) the outranking relation S may be represented by means of the non-additive, 
non-transitive and non-complete model i) if and only if it may be 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-49 

i) aSb iff F['I'q(cq(a), cq(b», q=1, .. ,m] ~ 0, 

where 'I'q: RZ~R is a non-decreasing function in its first argument and a non
increasing function in its second argument, for q=1, ... ,m, and F: Rm~R is a non
decreasing function in every one of its arguments. Observe that the values assumed 
by the function 'I' q may be interpreted as a measure of the strength of preference of 
a over b with respect to criterion q, q=I, ... ,m. Thus, 'I'q plays the same role as the 
function kq in the definition of the PCT. 

Recently, Greco, Matarazzo and Slowinski [31, 32] have proposed some 
more general models of conjoint measurement. The first model may be written as 
[31]: 

ii) aSb iff G['I' q(cq(a), cq(b», q=1, ... ,k , cq(a), cq(b), q=k+I, ... ,ml ~ 0, 

where the indices of the considered criteria are reordered such that {1, ... ,k} is the 
set of criteria for which the preference is expressed on a quantitative or a numerical 
non-quantitative scale and {k+ 1, ... ,m} is the set of criteria for which the preference 
is expressed on an ordinal scale; 'I'q is defined as above for q=I, ... ,k, and 
G: Rk+Z(m-k)~R is a non-decreasing function in its first k arguments. non-decreasing 
in each (k+'odd') argument ('odd'=1,3, ... ,2(m-k)-I), and non-increasing in each 
(k+'even') argument ('even'=2,4, ... ,2(m-k». Greco, Matarazzo and Slowinski 
proved that model ii) is based on the same axioms as the model i), with the 
exception of an axiom which, for each q=1, ... ,m, introduces a total preorder on the 
set of pairs (cq(a), cq(b», representing the preference strength, with respect to the 
considered criterion, in pairwise action comparisons. More precisely, this axiom is 
accepted only for q=I, ... ,k, i.e. for the set of criteria with a quantitative or a 
numerical non-quantitative preference scale. 

Moreover, Greco, Matarazzo and Slowinski [32] have proposed a model of 
conjoint measurement to represent also some inconsistencies in the preferences. 
This model is based on the concepts of C-Iower and C-upper approximation and of 
C-boundary of S and SC, where C={ 1, ... ,m}. This model can be written as 

iiia) (a,b)e ~(S) iff G['I'q(cq(a), cq(b», q=1, ... ,k, cq(a), Cq(b),q=k+I, ... ,ml ~ tz, 

iiib) (a,b)e ~(SC) iff G['I' q(cq(a), cq(b», q=1, ... ,k , cq(a), cq(b), q=k+l, ... ,m] ::;; tJ, 

iiic) (a,b)eBnc(S) (or, equivalently, (a,b)eBndSC» iff tl < G['I'q(cq(a), 
cq(b», q=1, ... ,k , cq(a), cq(b), q=k+l, .. ,ml < t2, 

where 'I' q and G are defined as above and tJ,tzeR such that tl <t2. With respect to the 
model iiia)-iiic), Greco, Matarazzo and Slowinski proved that it is always possible 
to obtain such a representation, ie. S should not satisfy any specific axiom. 

It is interesting to compare the above models of conjoint measurement with 
the decision rule' preference models resulting from the rough set approach (Sections 
14.3.3.5 and 14.3.3.6). The follOwing results have been proved: 

1) the outranking relation S may be represented by means of the non-additive, 
non-transitive and non-complete model i) if and only if it may be 



14-50 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

represented by means of a set of D,,-decision rules having a syntax defined 
in Section 14.3.3.5 [22], 

2) the outranking relation S may be represented by means of the non-additive, 
non-transitive and non-complete model ii) if and only if it may be 
represented by means of a set of D,,-ciecision rules having a syntax defined 
in Section 14.3.3.6 [31]. 

Greco, Matarazzo and Slowinski [32] have also pointed out the clear 
equivalence between the representation of S and So obtained using the rough set 
approach proposed in Section 14.3.3.6 and the model of conjoint measurement ilia)
iiic). Furthermore, they observed that the rough set representation proposed in 
Section 14.3.3.5 can be viewed as a particular case of that one presented in 3.3.6, 
when the set of criteria with an ordinal preference scale is empty. 

14.4 Conclusions 

In this chapter, we made a synthesis of the contribution of the rough sets theory, and 
of related with it fuzzy sets theory, to multiattribute and multicriteria decision 
making. Classic use of the rough set approach, and more generally, of machine 
learning, data mining and knowledge discovery, deals with problems of 
multiattribute classification, i.e. problems where neither the attributes describing the 
objects, nor the classes to which the objects are assigned, are ordered. On the other 
hand, MCDM deals with problems where descriptions (evaluations) of objects 
(actions) by means of attributes (criteria), as well as decisions in sorting, choice and 
ranking problems, are ordered. The generalization of the rough set approach to 
problems in which order properties are important is possible upon two important 
methodological extensions: approximation by dominance relations, which allows to 
deal with order properties of criteria, and pairwise comparison table, which allows 
to handle preference relations for choice and ranking problems. Making these 
extensions, it was possible to keep the main advantage of the rough set approach 
that consists in its ability of handling inconsistency. The notion of inconsistency has 
been even enlarged, because the extended rough set approach can deal with 
inconsistency also in the sense of dominance principle. As the available information 
may not only be inconsistent but also imperfect in the sense of graduality of 
similarity, uncertainty and preference, the rough set approach can be fruitfully 
complemented by the fuzzy set approach. 

Let us point out the main advantages of the extended rough set approach 
for MCDM: 

• preferential information necessary to deal with any multicriteria decision 
problem is asked to the DM just in terms of exemplary decisions, 

• the rough set analysis of preferential information supplies some useful elements 
of knowledge about the decision situation; these are: the relevance of attributes 
and/or criteria, information about their interaction (from quality of 
approximation and its analysis using fuzzy measures theory), minimal subsets of 
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attributes or criteria (reducts) conveying the relevant knowledge contained in the 
exemplary decisions, the set of the non-reducible attributes or criteria (core), 

• the preference model induced from the preferential information is expressed in 
a natural and comprehensible language of ";f .. , then ... " decision rules, 

• the rules based on the use of dominance have a more general syntax than the 
rules based on indiscernibility, 

• suitable procedures have been proposed to exploit the results of application of 
the decision rule preference model on a set of actions in order to workout a 
recommendation within choice, ranking, classification or sorting problem, 

• no prior discretization of quantitative condition attributes and/or criteria is 
necessary, 

• heterogeneous information (qualitative and quantitative, ordered and non
ordered, crisp and fuzzy evaluations, and ordinal, quantitative and numerical 
non-quantitative scales of preferences) can be processed within the extended 
rough set approach, while classic MCDM methods consider only quantitative 
ordered evaluations with rare exceptions, 

• the proposed methodology fulfils some desirable properties for both rough set 
approach (the approximated sets include lower approximation and are included 
in upper approximation, and the complementarity property is satisfied), and for 
MCDM (the decision rule preference model is formally equivalent to the non
additive, non-transitive and non-complete conjoint measurement model, and to a 
more general model for preferences defined on all kinds of scales), 

• the decision rule preference model resulting from the rough set approach is 
more general than all existing models of conjoint measurement, due to its 
capacity of handling inconsistent preferences (a new model of conjoint 
measurement is formally equivalent to the decision rule preference model 
handling inconsistencies), 

• the proposed methodology is based on elementary concepts and mathematical 
tools (sets and set operations, binary relations), without recourse to any 
algebraic or analytical structures; main ideas are very natural and, in a certain 
sense, even objective: indiscernibility, similarity and dominance. 

Acknowledgement 

The research of the first two authors has been supported by grant no. 
97.01387.CTlO from Italian National Council for Scientific Research (CNR). The 
third author wishes to acknowledge financial support from State Committee for 
Scientific Research, KBN research grant no. 8 TIlC 013 13, and from CRIT 2 
Esprit Project no. 20288. 

References 

[1] Banzhaf, J. F.: Weighted voting doesn't work: A mathematical analysis. Rutgers 
Law Review 19 (1965) 317-343 

TIlE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-51 

attributes or criteria (reducts) conveying the relevant knowledge contained in the 
exemplary decisions, the set of the non-reducible attributes or criteria (core), 

• the preference model induced from the preferential information is expressed in 
a natural and comprehensible language of ";f .. , then ... " decision rules, 

• the rules based on the use of dominance have a more general syntax than the 
rules based on indiscernibility, 

• suitable procedures have been proposed to exploit the results of application of 
the decision rule preference model on a set of actions in order to workout a 
recommendation within choice, ranking, classification or sorting problem, 

• no prior discretization of quantitative condition attributes and/or criteria is 
necessary, 

• heterogeneous information (qualitative and quantitative, ordered and non
ordered, crisp and fuzzy evaluations, and ordinal, quantitative and numerical 
non-quantitative scales of preferences) can be processed within the extended 
rough set approach, while classic MCDM methods consider only quantitative 
ordered evaluations with rare exceptions, 

• the proposed methodology fulfils some desirable properties for both rough set 
approach (the approximated sets include lower approximation and are included 
in upper approximation, and the complementarity property is satisfied), and for 
MCDM (the decision rule preference model is formally equivalent to the non
additive, non-transitive and non-complete conjoint measurement model, and to a 
more general model for preferences defined on all kinds of scales), 

• the decision rule preference model resulting from the rough set approach is 
more general than all existing models of conjoint measurement, due to its 
capacity of handling inconsistent preferences (a new model of conjoint 
measurement is formally equivalent to the decision rule preference model 
handling inconsistencies), 

• the proposed methodology is based on elementary concepts and mathematical 
tools (sets and set operations, binary relations), without recourse to any 
algebraic or analytical structures; main ideas are very natural and, in a certain 
sense, even objective: indiscernibility, similarity and dominance. 

Acknowledgement 

The research of the first two authors has been supported by grant no. 
97.01387.CTlO from Italian National Council for Scientific Research (CNR). The 
third author wishes to acknowledge financial support from State Committee for 
Scientific Research, KBN research grant no. 8 TIlC 013 13, and from CRIT 2 
Esprit Project no. 20288. 

References 

[1] Banzhaf, J. F.: Weighted voting doesn't work: A mathematical analysis. Rutgers 
Law Review 19 (1965) 317-343 



14-52 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[2] Bazan, J., Skowron, A, Synak, P.: "Dynamic reducts as a tool for extracting 
laws from decision tables". In: M. Zemankowa, Z. Ras (eds): Methodologies for 
Intelligent Systems. LNAI, Vol. 869, Springer-Verlag, Berlin 1994, pp. 346-355 

[3] Bouyssou, D.: Outranking relations: Do they have special properties? Journal of 
Multi-Criteria Decision Analysis 5 (2) (1996)99-111 

[4] Bouyssou, D., Pirlot, M: A general framework for the aggregation of 
semiorders. Technical Report, ESSEC, Cergy-Pontoise, 1997 

(5) Chmielewski, M, Gtzymala-Busse, J.: "Global discretization of continuous 
attributes as preprocessing for machine learning". In: Lin, T.Y., Wildberger, A 
(eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty 
Management. Simulation Councils Inc., San Diego, CA 1995, pp. 294-301 

[6] Dennemberg, D., Grabisch, M.: Shapley value and interaction index. 1996, 
Working paper 

[7) Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. of General 
Systems 17(1990)191-200 

[8) Dubois, D., Prade, H.: "Putting rough sets and fuzzy sets together". In: R 
Slowinski (ed): Intelligent Decision Support, Handbook of Applications and 
Advances of the Rough Sets Theory. Kluwer, Dordrecht 1992, pp.203-233 

[9J Dubois, D., Prade, H., Yager, RR: "A manifesto: Fuzzy information 
engineering". In: D. Dubois, H., Prade, R R Yager (ed): Fuzzy Information 
Engineering. Wiley, New York 1997,pp.I-8 

[10J Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in 
decision tree generation Machine Learning 8(1992)87-102 

[11] Fishburn, P. C.: Methods for estimating additive utilities. Management Science 
13(1967)435-453 

[12] Fishburn, P.C.: Nontransitive additive conjoint measurement. Journal of 
Mathematical Psychology 35(1991) 1-40 

[13] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria 
Decision Support. Kluwer, Dordrecht 1994 

[14] Grabisch, M: The application of fuzzy integrals in multicriteria decision 
making. European Journal of Operational Research 89(1996) 445-456 

[15] Grabisch, M: k-order additive discrete fuzzy measures and their 
representation. Fuzzy Sets and Systems 92(1997)167-189 

[16] Grabisch, M., Roubens, M: "Equivalent representations of a set function with 
application to decision making", paper presented at FUZZ-IEEE '97 Conference, 
Barcelona 1997 

[17) Greco S., Matarazzo, B., Slowinski, R: Rough set approach to multi-attribute 
choice and ranking problems. ICS Research Report 38/95, Warsaw University of 
Technology, Warsaw 1995, and in Proceedings of the Twelfth International 

14-52 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[2] Bazan, J., Skowron, A, Synak, P.: "Dynamic reducts as a tool for extracting 
laws from decision tables". In: M. Zemankowa, Z. Ras (eds): Methodologies for 
Intelligent Systems. LNAI, Vol. 869, Springer-Verlag, Berlin 1994, pp. 346-355 

[3] Bouyssou, D.: Outranking relations: Do they have special properties? Journal of 
Multi-Criteria Decision Analysis 5 (2) (1996)99-111 

[4] Bouyssou, D., Pirlot, M: A general framework for the aggregation of 
semiorders. Technical Report, ESSEC, Cergy-Pontoise, 1997 

(5) Chmielewski, M, Gtzymala-Busse, J.: "Global discretization of continuous 
attributes as preprocessing for machine learning". In: Lin, T.Y., Wildberger, A 
(eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty 
Management. Simulation Councils Inc., San Diego, CA 1995, pp. 294-301 

[6] Dennemberg, D., Grabisch, M.: Shapley value and interaction index. 1996, 
Working paper 

[7) Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. of General 
Systems 17(1990)191-200 

[8) Dubois, D., Prade, H.: "Putting rough sets and fuzzy sets together". In: R 
Slowinski (ed): Intelligent Decision Support, Handbook of Applications and 
Advances of the Rough Sets Theory. Kluwer, Dordrecht 1992, pp.203-233 

[9J Dubois, D., Prade, H., Yager, RR: "A manifesto: Fuzzy information 
engineering". In: D. Dubois, H., Prade, R R Yager (ed): Fuzzy Information 
Engineering. Wiley, New York 1997,pp.I-8 

[10J Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in 
decision tree generation Machine Learning 8(1992)87-102 

[11] Fishburn, P. C.: Methods for estimating additive utilities. Management Science 
13(1967)435-453 

[12] Fishburn, P.C.: Nontransitive additive conjoint measurement. Journal of 
Mathematical Psychology 35(1991) 1-40 

[13] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria 
Decision Support. Kluwer, Dordrecht 1994 

[14] Grabisch, M: The application of fuzzy integrals in multicriteria decision 
making. European Journal of Operational Research 89(1996) 445-456 

[15] Grabisch, M: k-order additive discrete fuzzy measures and their 
representation. Fuzzy Sets and Systems 92(1997)167-189 

[16] Grabisch, M., Roubens, M: "Equivalent representations of a set function with 
application to decision making", paper presented at FUZZ-IEEE '97 Conference, 
Barcelona 1997 

[17) Greco S., Matarazzo, B., Slowinski, R: Rough set approach to multi-attribute 
choice and ranking problems. ICS Research Report 38/95, Warsaw University of 
Technology, Warsaw 1995, and in Proceedings of the Twelfth International 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-53 

Conference, Hagen (Germany); G. Fandel, T. Gal (eds): Multiple Criteria Decision 
Making, Berlin 1997, pp. 318-329 

[18] Greco S., Matarazzo, B., Slowinski, R: Rough approximation of a preference 
relation by dominance relations. ICS Research Report 16/96, Warsaw University of 
Technology, Warsaw 1996 and in print in European Journal of Operational 
Research (1998) 

[19] Greco, S., Matarazzo, B., Slowinski, R: Rough approximations by fUzzy 
similarity relations. Working paper, University of Catania, Catania 1997 

[20] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a preferential 
information. Working paper, University of Catania, Catania 1997 

[21] Greco, S., Matarazzo, B., Slowinski, R: Exploitation procedures for rough set 
analysis of multicriteria decision problems. Working paper, University of Catania, 
Catania 1997 

[22] Greco, S., Matarazzo, B., Slowinski, R: Preference modeling by decision 
rules. Working paper, University of Catania, Catania 1997 

[23] Greco, S., Matarazzo, B., Slowinski, R: Fuzzy measures representation as 
technique for rough set analysis. Working paper, University of Catania, Catania 
1997 

[24] Greco, S., Matarazzo, B., Slowinski, R: "A new rough set approach to 
evaluation of bankruptcy risk". In: C. Zopounidis (ed): Operational Tools in the 
Management of Financial Risks. Kluwer, Dordrecht, 1998, pp. 121-136 

[25] Greco, S., Matarazzo, B., Slowinski, R: "Rough approximation of a preference 
relation in a pairwise comparison table". In: L. Polkowski, A. Skowron (eds): 
Rough Sets in Knowledge Discovery. Pbysica-Verlag, Heidelberg 1998, to appear 

[26] Greco, S., Matarazzo, B., Slowinski, R: "A new rough set approach to 
multicriteria and multiattribute classification" In: L. Polkowski, A. Skowron (eds): 
Proceedings of the First International Conference on Rough sets and Current 
Trends in Computing (RSTCTC '98), Warsaw, June 22-26, 1998; Springer-Verlag, 
1998,60-67 

[27] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a fuzzy 
preference relation. Working paper, University of Catania, Catania 1998 

[28] Greco, S., Matarazzo, B., Slowinski, R: "Fuzzy similarity relation as a basis 
for rough approximation". In: L. Polkowski, A. Skowron (eds): Proceedings of the 
First International Conference on Rough sets and Current Trends in Computing 
(RSTCTC '98), June 22-26, Warsaw 1998, Springer-Verlag, 1998,283-289 

[29] Greco, S., Matarazzo, B., Slowinski, R: Fuzzy dominance as a basis for rough 
approximations. Working paper, University of Catania, Catania 1998 

[30] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a preference 
relation using ordinal scales of preference. Working paper, University of Catania, 
Catania 1998 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-53 

Conference, Hagen (Germany); G. Fandel, T. Gal (eds): Multiple Criteria Decision 
Making, Berlin 1997, pp. 318-329 

[18] Greco S., Matarazzo, B., Slowinski, R: Rough approximation of a preference 
relation by dominance relations. ICS Research Report 16/96, Warsaw University of 
Technology, Warsaw 1996 and in print in European Journal of Operational 
Research (1998) 

[19] Greco, S., Matarazzo, B., Slowinski, R: Rough approximations by fUzzy 
similarity relations. Working paper, University of Catania, Catania 1997 

[20] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a preferential 
information. Working paper, University of Catania, Catania 1997 

[21] Greco, S., Matarazzo, B., Slowinski, R: Exploitation procedures for rough set 
analysis of multicriteria decision problems. Working paper, University of Catania, 
Catania 1997 

[22] Greco, S., Matarazzo, B., Slowinski, R: Preference modeling by decision 
rules. Working paper, University of Catania, Catania 1997 

[23] Greco, S., Matarazzo, B., Slowinski, R: Fuzzy measures representation as 
technique for rough set analysis. Working paper, University of Catania, Catania 
1997 

[24] Greco, S., Matarazzo, B., Slowinski, R: "A new rough set approach to 
evaluation of bankruptcy risk". In: C. Zopounidis (ed): Operational Tools in the 
Management of Financial Risks. Kluwer, Dordrecht, 1998, pp. 121-136 

[25] Greco, S., Matarazzo, B., Slowinski, R: "Rough approximation of a preference 
relation in a pairwise comparison table". In: L. Polkowski, A. Skowron (eds): 
Rough Sets in Knowledge Discovery. Pbysica-Verlag, Heidelberg 1998, to appear 

[26] Greco, S., Matarazzo, B., Slowinski, R: "A new rough set approach to 
multicriteria and multiattribute classification" In: L. Polkowski, A. Skowron (eds): 
Proceedings of the First International Conference on Rough sets and Current 
Trends in Computing (RSTCTC '98), Warsaw, June 22-26, 1998; Springer-Verlag, 
1998,60-67 

[27] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a fuzzy 
preference relation. Working paper, University of Catania, Catania 1998 

[28] Greco, S., Matarazzo, B., Slowinski, R: "Fuzzy similarity relation as a basis 
for rough approximation". In: L. Polkowski, A. Skowron (eds): Proceedings of the 
First International Conference on Rough sets and Current Trends in Computing 
(RSTCTC '98), June 22-26, Warsaw 1998, Springer-Verlag, 1998,283-289 

[29] Greco, S., Matarazzo, B., Slowinski, R: Fuzzy dominance as a basis for rough 
approximations. Working paper, University of Catania, Catania 1998 

[30] Greco, S., Matarazzo, B., Slowinski, R: Rough approximation of a preference 
relation using ordinal scales of preference. Working paper, University of Catania, 
Catania 1998 



14-54 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[31] Greco, S., Matarazzo, B., Slowinski, R: A conjoint measurement model to 
represent preference on ordinal scales. Working paper, University of Catania, 
Catania 1998 

[32] Greco, S., Matarazzo, B., Slowinski, R: A general model of conjoint 
measurement to represent preference inconsistencies. Working paper, University of 
Catania,Catania1998 

[33] Greco, S., Matarazzo, B., Slowinski, R: A rough approximation using 
indiscembility, similarity and dominance relations. Working paper, University of 
Catania,Catania1998 

[34] Greco, S., Matarazzo, B., Slowinski, R, Tsoukias, A.: Exploitation of a rough 
approximation of the outranking relation. Cahier du LAMSADE no. 152, 
Universite de Paris-Dauphine, Paris 1997 

[35] Greco, S., Matarazzo, B., Slowinski, R, Tsoukias, A.: "Exploitation of a rough 
approximation of the outranking relation in multicriteria choice and ranking". In: T. 
Stewart (ed): Multiple Criteria Decision Making. Proceedings of the Thirteenth 
International Conference, Cape Town (South Africa), January 1997; Springer
Verlag, Berlin, 1998, to appear 

[36] Grzymala-Busse, J.W.: "LERS - a system for learning from examples based on 
rough sets". In: R Slowinski, (ed) Intelligent Decision Support. Handbook of 
Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht, 
1992, pp. 3-18 

[37] Grzymala-Busse, J.W.: A new version of the rule induction system LERS. 
Fundamenta Informaticae. 31(1997)27-39 

[38] Jacquet-Lagreze, E.: Systemes de decision et acteurs multiples - Contribution a 
une theorie de l'action pour les sciences des organisations. These d'Etat, Universite 
de Paris-Dauphine, Paris 1981 

[39] Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for 
multicriteria decision-making, the UTA method. European Journal of Operational 
Research 10(1982)151-164. 

[40] Keeney, R L., Raiffa, H.: Decision with Multiple Objectives - Preferences and 
value Tradeofft. Wiley. New York 1976 

[41] Krantz, D.M., Luce, RD., Suppes, P., Tversky, A.: Foundations of 
Measurements I. Academic Press. 1978 

[42] Krawiec, K., Slowinski, R, Vanderpooten, D.: "Learning of decision rules 
from similarity based rough approximations". In: A. Skowron, L. Polkowski (eds): 
Rough Sets in Knowledge Discovery. Pbysica-Verlag, Heidelberg 1998, to appear 

[43] Kmsinska, E., Slowinski, R, Stefanowski, 1.: Discriminant versus rough set 
approach to vague data analysis. Applied Stochastic Models and Data Analysis 
8( 1992)43-56 

[44] Kryszkiewicz, M., Rybinski, H.: Computation of reducts of composed 
information systems. Fundamenta Informaticae 27(1996)183-195 

14-54 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[31] Greco, S., Matarazzo, B., Slowinski, R: A conjoint measurement model to 
represent preference on ordinal scales. Working paper, University of Catania, 
Catania 1998 

[32] Greco, S., Matarazzo, B., Slowinski, R: A general model of conjoint 
measurement to represent preference inconsistencies. Working paper, University of 
Catania,Catania1998 

[33] Greco, S., Matarazzo, B., Slowinski, R: A rough approximation using 
indiscembility, similarity and dominance relations. Working paper, University of 
Catania,Catania1998 

[34] Greco, S., Matarazzo, B., Slowinski, R, Tsoukias, A.: Exploitation of a rough 
approximation of the outranking relation. Cahier du LAMSADE no. 152, 
Universite de Paris-Dauphine, Paris 1997 

[35] Greco, S., Matarazzo, B., Slowinski, R, Tsoukias, A.: "Exploitation of a rough 
approximation of the outranking relation in multicriteria choice and ranking". In: T. 
Stewart (ed): Multiple Criteria Decision Making. Proceedings of the Thirteenth 
International Conference, Cape Town (South Africa), January 1997; Springer
Verlag, Berlin, 1998, to appear 

[36] Grzymala-Busse, J.W.: "LERS - a system for learning from examples based on 
rough sets". In: R Slowinski, (ed) Intelligent Decision Support. Handbook of 
Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht, 
1992, pp. 3-18 

[37] Grzymala-Busse, J.W.: A new version of the rule induction system LERS. 
Fundamenta Informaticae. 31(1997)27-39 

[38] Jacquet-Lagreze, E.: Systemes de decision et acteurs multiples - Contribution a 
une theorie de l'action pour les sciences des organisations. These d'Etat, Universite 
de Paris-Dauphine, Paris 1981 

[39] Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for 
multicriteria decision-making, the UTA method. European Journal of Operational 
Research 10(1982)151-164. 

[40] Keeney, R L., Raiffa, H.: Decision with Multiple Objectives - Preferences and 
value Tradeofft. Wiley. New York 1976 

[41] Krantz, D.M., Luce, RD., Suppes, P., Tversky, A.: Foundations of 
Measurements I. Academic Press. 1978 

[42] Krawiec, K., Slowinski, R, Vanderpooten, D.: "Learning of decision rules 
from similarity based rough approximations". In: A. Skowron, L. Polkowski (eds): 
Rough Sets in Knowledge Discovery. Pbysica-Verlag, Heidelberg 1998, to appear 

[43] Kmsinska, E., Slowinski, R, Stefanowski, 1.: Discriminant versus rough set 
approach to vague data analysis. Applied Stochastic Models and Data Analysis 
8( 1992)43-56 

[44] Kryszkiewicz, M., Rybinski, H.: Computation of reducts of composed 
information systems. Fundamenta Informaticae 27(1996)183-195 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-55 

[45] Langley, P., Simon, H. A: "Fielded applications of machine learning". In: R 
S. Michalski, 1. Bmtko, M. Kubat (eds): Machine Learning and Data Mining, 
Wiley, New York 1998, pp. 113-129 

[46] Lin, T.: "Neighborhood systems and approximation in database and knowledge 
base systems", in Proceedings of the 4th International Symposium on 
Methodologies for Intelligent Systems, 1989 

[47] Luce, RD.: Semi-orders and a theory of utility discrimination. Econometrica 
24(1956) 178-191 

[48J March, 1. G.: "Bounded mtionality, ambiguity, and the engineering of choice". 
In: D. E. Bell, H. Raiffa, A Tversky (eels): Decision Making, Descriptive, 
Normative and Prescriptive Interactions. Cambridge University Press, New York 
1988, pp. 33-58 

[49] Marcus, S.: Tolerance rough sets, Cech topologies, learning processes. Bull. of 
the Polish Academy of Sciences, Technical Sciences 42 (3)(1994)471-487 

[50] Michalski, RS., Bratko, I. Kubat, M. (eds): Machine Learning and Data 
Mining - Methods and Applications. Wiley, New York 1998 

[51J Mienko, R, Slowinski, R, Stefanowski, J., Susmaga, R: "Rough family -
software implementation of rough set based data analysis and rule discovery 
techniques". In: Shusaku Tsumoto et al. (eels), Proceedings of the Fourth 
International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, Tokyo 
University Press, Tokyo, November 6-8 1996, pp. 437-440 

[52] Mienko, R, Stefanowski, 1., Toumi, K., Vanderpooten, D.: Discovery-oriented 
induction of decision rules. Cahier du LAMSADE no. 141, Universite de Paris 
Dauphine, Paris 1996 

[53J Mousseau, V., Problemes lies a l'evaluation de /'importance en aide 
multicritere a la decision: Rejlexions thioriques et experimentations, These, 
Universite de Paris-Dauphine, Paris 1993 

[54J Murofushi, T.: "A technique for reading fuzzy measures (i): the Shapley value 
with respect to a fuzzy measure". Proc. 2nd Fuzzy Workshop, Nagaoka, Japan, 
October 1992,pp.39-48,inJapanese 

[55J Murofushi, T., Soneda, S.: "Techniques for reading fuzzy measures (iii): 
interaction index". Proc. 9th Fuzzy Systems Symposium, Sapporo, Japan, May 
1993, pp. 693-696, in Japanese 

[56J Nguyen, S.H., Skowron, A: "Quantization of real value attributes: rough set 
and Boolean reasoning approach". Proc. 2nd Joint Annual Conference on 
Information Sciences, Wrightsville Beach, NC, 1995, pp. 34-37 

[57] Nieminen, 1.: Rough tolerance equality. Fundamenta Informaticae 
11(3)(1988)289-296 

[58J Pawlak, Z.: Rough sets. International Journal of Information & Computer 
Sciences 11(1982)341-356 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-55 

[45] Langley, P., Simon, H. A: "Fielded applications of machine learning". In: R 
S. Michalski, 1. Bmtko, M. Kubat (eds): Machine Learning and Data Mining, 
Wiley, New York 1998, pp. 113-129 

[46] Lin, T.: "Neighborhood systems and approximation in database and knowledge 
base systems", in Proceedings of the 4th International Symposium on 
Methodologies for Intelligent Systems, 1989 

[47] Luce, RD.: Semi-orders and a theory of utility discrimination. Econometrica 
24(1956) 178-191 

[48J March, 1. G.: "Bounded mtionality, ambiguity, and the engineering of choice". 
In: D. E. Bell, H. Raiffa, A Tversky (eels): Decision Making, Descriptive, 
Normative and Prescriptive Interactions. Cambridge University Press, New York 
1988, pp. 33-58 

[49] Marcus, S.: Tolerance rough sets, Cech topologies, learning processes. Bull. of 
the Polish Academy of Sciences, Technical Sciences 42 (3)(1994)471-487 

[50] Michalski, RS., Bratko, I. Kubat, M. (eds): Machine Learning and Data 
Mining - Methods and Applications. Wiley, New York 1998 

[51J Mienko, R, Slowinski, R, Stefanowski, J., Susmaga, R: "Rough family -
software implementation of rough set based data analysis and rule discovery 
techniques". In: Shusaku Tsumoto et al. (eels), Proceedings of the Fourth 
International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, Tokyo 
University Press, Tokyo, November 6-8 1996, pp. 437-440 

[52] Mienko, R, Stefanowski, 1., Toumi, K., Vanderpooten, D.: Discovery-oriented 
induction of decision rules. Cahier du LAMSADE no. 141, Universite de Paris 
Dauphine, Paris 1996 

[53J Mousseau, V., Problemes lies a l'evaluation de /'importance en aide 
multicritere a la decision: Rejlexions thioriques et experimentations, These, 
Universite de Paris-Dauphine, Paris 1993 

[54J Murofushi, T.: "A technique for reading fuzzy measures (i): the Shapley value 
with respect to a fuzzy measure". Proc. 2nd Fuzzy Workshop, Nagaoka, Japan, 
October 1992,pp.39-48,inJapanese 

[55J Murofushi, T., Soneda, S.: "Techniques for reading fuzzy measures (iii): 
interaction index". Proc. 9th Fuzzy Systems Symposium, Sapporo, Japan, May 
1993, pp. 693-696, in Japanese 

[56J Nguyen, S.H., Skowron, A: "Quantization of real value attributes: rough set 
and Boolean reasoning approach". Proc. 2nd Joint Annual Conference on 
Information Sciences, Wrightsville Beach, NC, 1995, pp. 34-37 

[57] Nieminen, 1.: Rough tolerance equality. Fundamenta Informaticae 
11(3)(1988)289-296 

[58J Pawlak, Z.: Rough sets. International Journal of Information & Computer 
Sciences 11(1982)341-356 



14-56 TIIE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[59] Pawlak, Z.: Rough probability. Bull. Polish Acad.. Scis., Technical Sci. 
33(1985) 9-10 

[60] Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17(1985)99-
102 

[61] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, 
Dordrecht 1991 

[62] Pawlak, Z: Rough set approach to knowledge-based decision support 
European Journal of Operational Research 99(1997)48-57 

[63] Pawlak, Z., Slowinski, R.: Rough set approach to multi-attribute decision 
analysis. European Journal of Operational Research 72(1994)443-459 

[64] Polkowski, L., Skowron, A: "Rough mereology". Proc. Symp. on 
Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence, vol. 
869, Springer-Verlag, Berlin, 1994, pp. 85-94 

[65] Polkowski, L., Skowron, A, Zytkow, J.: "Rough foundations for rough sets". 
In: T.Y. Lin, A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, 
Neural Networks, Uncertainty Management, Knowledge Discovery. Simulation 
Councils, Inc., San Diego, CA, 1995, pp. 142-149 

[66] Roubens, M.: Interaction between criteria through the use of fuzzy measures, 
Report 96.007, Institut de Mathematique Universite de Liege, Liege 1996 

[67] Roy, B.: Methodologie Mu/ticritere d'Aide a /a Decision. Economica, Paris 
1985 

[68] Roy, B.: The outranking approach and the foundation of ELECTRE methods. 
Theory and Decision 31(1991) 49-73 

[69] Roy, B.: Decision science or decision aid science? European Journal of 
Operational Research, Special Issue on Model Validation in Operations Research 
66(1993)184-203 

[70] Roy, B.: L 'aide a /a decision ajourd'hui: Que tievrait-on en attendre? 
Document do LAMSADE no. 104, Universite de Paris Dauphine, Paris 1997. 
English version: "Aiding the Decision Maker", chapter in the present volume 

[71] Roy, B., Bouyssou, D.: Aide Mu/ticritere a /a Decision: Methodes et Cas. 
Economica,Paris 1993 

[72] Shafer, G.: A Mathematica/ Theory of Evidence. Princeton University Press, 
Princeton 1976 

[73] Shapley, L. S.: "A value for n-person games". In: H. W. Kuhn, A W. Tucker 
(eds): Contributions to the Theory of Games II. Princeton University Press, 
Princeton 1953, pp. 307-317 

[74] Shoemaker, P.J.H.: The expected utility model: Its variants, purposes, evidence 
and limitations. Journal of Economic Literature, XX(1982)529-562 

14-56 TIIE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[59] Pawlak, Z.: Rough probability. Bull. Polish Acad.. Scis., Technical Sci. 
33(1985) 9-10 

[60] Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17(1985)99-
102 

[61] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, 
Dordrecht 1991 

[62] Pawlak, Z: Rough set approach to knowledge-based decision support 
European Journal of Operational Research 99(1997)48-57 

[63] Pawlak, Z., Slowinski, R.: Rough set approach to multi-attribute decision 
analysis. European Journal of Operational Research 72(1994)443-459 

[64] Polkowski, L., Skowron, A: "Rough mereology". Proc. Symp. on 
Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence, vol. 
869, Springer-Verlag, Berlin, 1994, pp. 85-94 

[65] Polkowski, L., Skowron, A, Zytkow, J.: "Rough foundations for rough sets". 
In: T.Y. Lin, A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, 
Neural Networks, Uncertainty Management, Knowledge Discovery. Simulation 
Councils, Inc., San Diego, CA, 1995, pp. 142-149 

[66] Roubens, M.: Interaction between criteria through the use of fuzzy measures, 
Report 96.007, Institut de Mathematique Universite de Liege, Liege 1996 

[67] Roy, B.: Methodologie Mu/ticritere d'Aide a /a Decision. Economica, Paris 
1985 

[68] Roy, B.: The outranking approach and the foundation of ELECTRE methods. 
Theory and Decision 31(1991) 49-73 

[69] Roy, B.: Decision science or decision aid science? European Journal of 
Operational Research, Special Issue on Model Validation in Operations Research 
66(1993)184-203 

[70] Roy, B.: L 'aide a /a decision ajourd'hui: Que tievrait-on en attendre? 
Document do LAMSADE no. 104, Universite de Paris Dauphine, Paris 1997. 
English version: "Aiding the Decision Maker", chapter in the present volume 

[71] Roy, B., Bouyssou, D.: Aide Mu/ticritere a /a Decision: Methodes et Cas. 
Economica,Paris 1993 

[72] Shafer, G.: A Mathematica/ Theory of Evidence. Princeton University Press, 
Princeton 1976 

[73] Shapley, L. S.: "A value for n-person games". In: H. W. Kuhn, A W. Tucker 
(eds): Contributions to the Theory of Games II. Princeton University Press, 
Princeton 1953, pp. 307-317 

[74] Shoemaker, P.J.H.: The expected utility model: Its variants, purposes, evidence 
and limitations. Journal of Economic Literature, XX(1982)529-562 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-57 

[75] Skowron, A: "Boolean reasoning for decision rules generation". In: 1. 
Komorowski, Z.W. Ras (eds): Methodologiesfor Intelligent Systems. Lecture Notes 
in Artificial Intelligence, Vol. 689, Springer-Verlag, Berlin 1993, pp. 295-305 

[76] Skowron, A, Grzymala-Busse, 1. W.: "From the rough set theory to the 
evidence theory". In: M. Fedrizzi, 1. Kacprzyk, RR Yager (eds)~ Advances in the 
Dempster-Shajer Theory of Evidence. John Wiley and Sons, New York 1994, 
pp.193-236 

[77] Skowron, A, Polkowski, L.: Decision algorithms: a survey of rough set
theoretic methods. Fundamenta Informaticae 27(3/4)(1997)345-358 

[78] Skowron, A, Rauszer c.: "The discemibility matrices and functions in 
information systems". In: R Slowinski (ed): Intelligent Decision Support, 
Handbook of Applications and Advances of the Rough Set Theory, Kluwer 
Academic Publishers, Dordrecht 1992, pp. 331-362 

[79] Skowron, A, Stepaniuk, J.: "Generalized approximation spaces". In: T.Y. Lin, 
A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, 
Uncertainty Management, Knowledge Discovery. Simulation Councils, Inc., San 
Diego, CA, 1995, pp. 18-21 

[80] Slovic, P.: Choice between equally-valued alternatives. Iournal of 
Experimental Psychology: Human Perception Performance 1(1975)280-287 

[81] Slowinski, K., Slowinski, R: Sensitivity analysis of rough classification. Int. J. 
Man-Machine Studies 32(1990)693-705 

[82] Slowinski, K., Slowinski, R, Stefanowski, J.: Rough set approach to analysis 
of data from peritoneal lavage in acute pancreatitis. Medical Informatics 
13(1988)143-159 

[83] Slowinski, K., Stefanowski, 1.: "On limitations of using rough set approach to 
analyse non-trivial medical information systems". In: Shusaku Tsumoto et al. (eds): 
Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets and 
Machine Discovery, Tokyo University Press, Tokyo 1996, pp. 176-183 

[84] Slowinski, R (ed): Intelligent Decision Support. Handbook of Applications and 
Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht 1992 

[85] Slowinski, R: A generalization of the indiscemibility relation for rough set 
analysis of quantitative information. Rivista di matematica per Ie scienze 
economiche e sociali 15(1993)65-78 

[86] Slowinski, R: "Rough set processing of fuzzy information", In: T.Y.Lin, 
A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, 
Uncertainty Management, Knowledge Discovery. Simulation Councils, Inc., San 
Diego, CA, 1995, pp. 142-145 

[87] Slowinski, R, Stefanowski, J.: Rough classification in incomplete information 
systems. Mathl. Comput. Modelling 12 (10/11) (1989)1347-1357 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-57 

[75] Skowron, A: "Boolean reasoning for decision rules generation". In: 1. 
Komorowski, Z.W. Ras (eds): Methodologiesfor Intelligent Systems. Lecture Notes 
in Artificial Intelligence, Vol. 689, Springer-Verlag, Berlin 1993, pp. 295-305 

[76] Skowron, A, Grzymala-Busse, 1. W.: "From the rough set theory to the 
evidence theory". In: M. Fedrizzi, 1. Kacprzyk, RR Yager (eds)~ Advances in the 
Dempster-Shajer Theory of Evidence. John Wiley and Sons, New York 1994, 
pp.193-236 

[77] Skowron, A, Polkowski, L.: Decision algorithms: a survey of rough set
theoretic methods. Fundamenta Informaticae 27(3/4)(1997)345-358 

[78] Skowron, A, Rauszer c.: "The discemibility matrices and functions in 
information systems". In: R Slowinski (ed): Intelligent Decision Support, 
Handbook of Applications and Advances of the Rough Set Theory, Kluwer 
Academic Publishers, Dordrecht 1992, pp. 331-362 

[79] Skowron, A, Stepaniuk, J.: "Generalized approximation spaces". In: T.Y. Lin, 
A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, 
Uncertainty Management, Knowledge Discovery. Simulation Councils, Inc., San 
Diego, CA, 1995, pp. 18-21 

[80] Slovic, P.: Choice between equally-valued alternatives. Iournal of 
Experimental Psychology: Human Perception Performance 1(1975)280-287 

[81] Slowinski, K., Slowinski, R: Sensitivity analysis of rough classification. Int. J. 
Man-Machine Studies 32(1990)693-705 

[82] Slowinski, K., Slowinski, R, Stefanowski, J.: Rough set approach to analysis 
of data from peritoneal lavage in acute pancreatitis. Medical Informatics 
13(1988)143-159 

[83] Slowinski, K., Stefanowski, 1.: "On limitations of using rough set approach to 
analyse non-trivial medical information systems". In: Shusaku Tsumoto et al. (eds): 
Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets and 
Machine Discovery, Tokyo University Press, Tokyo 1996, pp. 176-183 

[84] Slowinski, R (ed): Intelligent Decision Support. Handbook of Applications and 
Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht 1992 

[85] Slowinski, R: A generalization of the indiscemibility relation for rough set 
analysis of quantitative information. Rivista di matematica per Ie scienze 
economiche e sociali 15(1993)65-78 

[86] Slowinski, R: "Rough set processing of fuzzy information", In: T.Y.Lin, 
A Wildberger (eds): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, 
Uncertainty Management, Knowledge Discovery. Simulation Councils, Inc., San 
Diego, CA, 1995, pp. 142-145 

[87] Slowinski, R, Stefanowski, J.: Rough classification in incomplete information 
systems. Mathl. Comput. Modelling 12 (10/11) (1989)1347-1357 



14-58 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[88] Slowinski, R, Stefanowski, J.: "RoughDAS and RoughClass software 
implementations of the rough sets approach". In: R Slowinski (ed): Intelligent 
Decision Support. Handbook of Applications and Advances of the Rough Sets 
Theory. Kluwer Academic Publishers, Dordrecht 1992, pp. 445-456 

[89] Slowinski, R, Stefanowski, 1.: "Handling various types of uncertainty in the 
rough set approach". In: W. P. Ziarko (ed): Rough Sets, Fuzzy Sets and Knowledge 
Discovery, Springer-Verlag, London 1994, pp. 366-376 

[90] Slowinski, R, Stefanowski, J.: Rough set reasoning about uncertain data. 
Fundamenta Informaticae 27(1996)229-243 

[91] Slowinski, R, Vanderpooten, D.: Similarity relation as a basis for rough 
approximations, ICS Research Report 53/95, Warsaw University of Technology, 
Warsaw 1995. Also in: P.P. Wang (ed): Advances in Machine Intelligence & Soft
Computing, vol.IV, Duke University Press, Durham, NC, 1997, pp. 17-33 

[92] Slowinski, R, Vanderpooten, D.: A generalized definition of rough 
approximations based on similarity. IEEE Transactions on Data and Knowledge 
Engineering 1998, to appear 

[93] Stefanowski, J.: Rough sets theory and discriminant methods as tools for 
analysis of information systems. A comparative study. Foundations of Computing 
and Decision Sciences 17(1992)81-98 

[94] Stefanowski, 1.: "On rough set based approaches to induction of decision 
rules". In: A Skowron, L. Polkowski (eds): Rough Sets in Data Mining and 
Knowledge Discovery, Physica-Verlag, Heidelberg 1998, to appear 

[95] Susmaga, R: Analysing discretizations of continuous attributes given a 
monotonic discrimination function. Intelligent Data Analysis 1 (3)( 1997) on-line 
journal, http://www-east.elsevier.com 

[96] Susmaga, R: "Experiments in incremental computation of reducts". In: A 
Skowron, L. Polkowski (eds): Rough Sets in Data Mining and Knowledge 
Discovery. Physica-Verlag, Heidelberg 1998, to appear 

[97] Tsoukias, A, Vincke, Ph.: A new axiomatic foundation of the partial 
comparability theory. Theory and Decision 39(1995)79-114 

[98] Tsoukias, A, Vincke, Ph.: ''Extended preference structures in MCDA". In: J. 
Climaco (ed): Multicriteria Analysis, Springer-Verlag, Berlin 1997, pp. 37-50 

[99] Tversky, A: Intransitivity of preferences. Psychological Review 76(1969)31-
48 

[100] Tversky, A: Features of similarity. Psychological Review 84 (4)(1977)327-
352 

[101] Vmcke, Ph.: Multicriteria Decision-Aid. John Wiley and Sons, New York 
1992 

[102] Wakker, P.P.: Additive representions of preferences. A new foundation of 
decision analysis. Kluwer Academic Publishers, Dordrecht 1989 

14-58 THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 

[88] Slowinski, R, Stefanowski, J.: "RoughDAS and RoughClass software 
implementations of the rough sets approach". In: R Slowinski (ed): Intelligent 
Decision Support. Handbook of Applications and Advances of the Rough Sets 
Theory. Kluwer Academic Publishers, Dordrecht 1992, pp. 445-456 

[89] Slowinski, R, Stefanowski, 1.: "Handling various types of uncertainty in the 
rough set approach". In: W. P. Ziarko (ed): Rough Sets, Fuzzy Sets and Knowledge 
Discovery, Springer-Verlag, London 1994, pp. 366-376 

[90] Slowinski, R, Stefanowski, J.: Rough set reasoning about uncertain data. 
Fundamenta Informaticae 27(1996)229-243 

[91] Slowinski, R, Vanderpooten, D.: Similarity relation as a basis for rough 
approximations, ICS Research Report 53/95, Warsaw University of Technology, 
Warsaw 1995. Also in: P.P. Wang (ed): Advances in Machine Intelligence & Soft
Computing, vol.IV, Duke University Press, Durham, NC, 1997, pp. 17-33 

[92] Slowinski, R, Vanderpooten, D.: A generalized definition of rough 
approximations based on similarity. IEEE Transactions on Data and Knowledge 
Engineering 1998, to appear 

[93] Stefanowski, J.: Rough sets theory and discriminant methods as tools for 
analysis of information systems. A comparative study. Foundations of Computing 
and Decision Sciences 17(1992)81-98 

[94] Stefanowski, 1.: "On rough set based approaches to induction of decision 
rules". In: A Skowron, L. Polkowski (eds): Rough Sets in Data Mining and 
Knowledge Discovery, Physica-Verlag, Heidelberg 1998, to appear 

[95] Susmaga, R: Analysing discretizations of continuous attributes given a 
monotonic discrimination function. Intelligent Data Analysis 1 (3)( 1997) on-line 
journal, http://www-east.elsevier.com 

[96] Susmaga, R: "Experiments in incremental computation of reducts". In: A 
Skowron, L. Polkowski (eds): Rough Sets in Data Mining and Knowledge 
Discovery. Physica-Verlag, Heidelberg 1998, to appear 

[97] Tsoukias, A, Vincke, Ph.: A new axiomatic foundation of the partial 
comparability theory. Theory and Decision 39(1995)79-114 

[98] Tsoukias, A, Vincke, Ph.: ''Extended preference structures in MCDA". In: J. 
Climaco (ed): Multicriteria Analysis, Springer-Verlag, Berlin 1997, pp. 37-50 

[99] Tversky, A: Intransitivity of preferences. Psychological Review 76(1969)31-
48 

[100] Tversky, A: Features of similarity. Psychological Review 84 (4)(1977)327-
352 

[101] Vmcke, Ph.: Multicriteria Decision-Aid. John Wiley and Sons, New York 
1992 

[102] Wakker, P.P.: Additive representions of preferences. A new foundation of 
decision analysis. Kluwer Academic Publishers, Dordrecht 1989 



THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-59 

[103] Yao, Y.: "Combination of rough sets and fuzzy sets based on a-level sets". In: 
T. Y. Lin, N. Cercone (eds): Rough Sets and Data Mining, Kluwer, Boston 19%, 
pp.301-321 

[104] Yao, Y., Wong, S.: "Generalization of rough sets using relationships between 
attribute values". Proceedings of the 2nd Annual Joint Conference on Information 
Sciences, Wrightsville Beach, NC, 1995,1'1'.30-33 

[105] Ziarko, W., Shan, N.: "An incremental learning algorithm for constructing 
decision rules". In: W.P. Ziarko (ed): Rough Sets, Fuzzy Sets and Knowledge 
Discovery. Springer-Vedag, London 1994, pp. 326-334 

THE USE OF ROUGH SETS AND FUZZY SETS IN MCDM 14-59 

[103] Yao, Y.: "Combination of rough sets and fuzzy sets based on a-level sets". In: 
T. Y. Lin, N. Cercone (eds): Rough Sets and Data Mining, Kluwer, Boston 19%, 
pp.301-321 

[104] Yao, Y., Wong, S.: "Generalization of rough sets using relationships between 
attribute values". Proceedings of the 2nd Annual Joint Conference on Information 
Sciences, Wrightsville Beach, NC, 1995,1'1'.30-33 

[105] Ziarko, W., Shan, N.: "An incremental learning algorithm for constructing 
decision rules". In: W.P. Ziarko (ed): Rough Sets, Fuzzy Sets and Knowledge 
Discovery. Springer-Vedag, London 1994, pp. 326-334 



15 USE OF ARTIFICIAL 
INTELLIGENCE IN MCDM 

Patrice Perny 
Jean-Charles Pomerol 

CONTENTS 

Foreword 
15.1 Using traditional AI representations 

15.1.1 Introduction 
15.1.2 Rule-based representations 
15.1.3 Case-based and object representations 
15.1.4 Neural Networks 
15.1.5 Using classical logic 

15.2 Models based on non-classical logic 
15.2.1 The use of [0, I)-valued logic 
15.2.2 The use of Belnap's logic and its extensions 
15.2.3 Preference expression as a reasoning process 
15.2.4 Possibility theory and qualitative decision making 

under uncertainty 
15.3 Heuristic Search and interactivity 

15.3.1 Introduction 
15.3.2 Heuristic search in the choice set 
15.3.3 The moving base heuristic 
15.3.4 Interactivity 
15.3.5 Multicriteria DSSs 

15.4 Conclusions 
References 

15-2 
15-2 
15-2 
15-2 
15-9 
15-9 

15-12 
15-12 
15-l3 
15-18 
15-22 

15-23 
15-26 
15-26 
15-27 
15-28 
15-29 
15-31 
15-34 
15-35 

Abstract. We survey the different representations, including non-classical logic, 
issued from artificial intelligence and used in MCDM. On the one hand, we mainly 
focus on rule-based and object representations, and applications of non-classical 
logic. On the other hand, we examine the contribution of heuristic search ideas to 
interactive MCDM. 

15 USE OF ARTIFICIAL 
INTELLIGENCE IN MCDM 

Patrice Perny 
Jean-Charles Pomerol 

CONTENTS 

Foreword 
15.1 Using traditional AI representations 

15.1.1 Introduction 
15.1.2 Rule-based representations 
15.1.3 Case-based and object representations 
15.1.4 Neural Networks 
15.1.5 Using classical logic 

15.2 Models based on non-classical logic 
15.2.1 The use of [0, I)-valued logic 
15.2.2 The use of Belnap's logic and its extensions 
15.2.3 Preference expression as a reasoning process 
15.2.4 Possibility theory and qualitative decision making 

under uncertainty 
15.3 Heuristic Search and interactivity 

15.3.1 Introduction 
15.3.2 Heuristic search in the choice set 
15.3.3 The moving base heuristic 
15.3.4 Interactivity 
15.3.5 Multicriteria DSSs 

15.4 Conclusions 
References 

15-2 
15-2 
15-2 
15-2 
15-9 
15-9 

15-12 
15-12 
15-l3 
15-18 
15-22 

15-23 
15-26 
15-26 
15-27 
15-28 
15-29 
15-31 
15-34 
15-35 

Abstract. We survey the different representations, including non-classical logic, 
issued from artificial intelligence and used in MCDM. On the one hand, we mainly 
focus on rule-based and object representations, and applications of non-classical 
logic. On the other hand, we examine the contribution of heuristic search ideas to 
interactive MCDM. 

T. Gal et al. (eds.), Multicriteria Decision Making
© Springer Science+Business Media New York 1999



15-2 USE OF ARTIFICIAL INTELLIGENCE IN MCDM 

FOREWORD 

Even if multicriteria analysis can be proud of going back to the end of the 18th 
century (Borda, Condorcet), far before the emergence of AI, the two domains 
eventually begun to be really recognized during the sixties. Moreover, it is only 
during the eighties that authors explicitly referred to AI for addressing typical 
multicriteria issues. We can divide the relationships between AI and MCDM in three 
large sub-chapters, in the first ones we will focus on the new ideas and 
representations, including non-classical logic, coming from AI that have been 
introduced in MCDM and, in the third part, we will examine how AI and MCDM 
share the same concerns as regards interactivity, friendliness and user involvement. 

Whereas we try to focus, in this chapter, on the use of AI in MCDM we must 
mention that many methods and tools, which were popularized by AI people, are 
now largely spread in multicriteria analysis as well as in other fields. Some of these 
tools are so widely used in multicriteria analysis that they deserve special chapters, 
among them genetic algorithms, heuristic and meta-heuristic methods (Chapters 6 
and 16), interactivity and user-friendliness (Chapters 7, 9 and 10). 

15.1 USING TRADITIONAL AI REPRESENTATIONS 

15. 1. 1 Introduction 

At the beginning of the AI venture were two main ideas attested in the seminal book 
of Newell and Simon [91], the first one is that computers are able to handle symbolic 
as well as numerical computing, the second is that heuristic reasoning is the general 
framework for human reasoning. We will return to the second idea in the third 
section of this chapter. Let us start with symbolic representations. 

As a matter of fact, multicriteria decision analysis mainly nurtured in an OR 
environment more prone to numerical representations than to symbolic one. This is 
probably one of the reasons why, whereas there exist many works on aggregation 
starting from valued alternatives (we mean alternatives represented as numerical 
vectors), there are very few papers concerned with more qualitative forms of 
reasoning such that the design of the alternatives and/or of the criteria. 

Among the representations issued from AI we will distinguish four main families: 
rule-based and object-based representations, neural networks, and finally, logic
based representations. This chapter is organized as follows: in the first subsection we 
will examine the MCDM use of AI representations. Then, because of the large 
number of applications of logic we will devote the whole subsection 15.2 to this 
topic and finally, we will show the contribution of AI to heuristic search and 
interactivity. 
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15. 1.2 Rule-based representations 

In multicriteria decision making there are several important steps to consider: 
defining the alternatives or, using Simon's vocabulary [l33] designing the 
alternatives, defining the criteria (see chapter 1), evaluating the alternatives 
according to each criterion, then eventually the aggregation (the choice according to 
Simon's phases of decision process), not to mention the review phase. Among all 
these possibilities the choice phase generated most of the papers and few attempts 
were made to address the other issues. Nevertheless, we will try to survey all the 
proposals we are aware of. Let us begin by the most important, at least regarding the 
number of papers. 

Aggregating or supporting the decision maker's choice by rules. Let us think of 
the multicriteria decision making process as a reasoning process. The decision maker 
choice relies on trade-offs between more or less contradictory criteria, e.g. earnings 
against risk. We can directly express these trade-offs by rules. Let us give an 
example, drawn from [15], concerning a car: 

If SECURITY is high and COMFORT is very good 
then TECHNICAL-CHARACTERISTICS are very good. 

It is clear that the preceding rule aggregates the two criteria "SECURITY" and 
"COMFORT' under the name "TECHNICAL-CHARACTERISTICS". Fundamentally 
a rule is an aggregating process. When talking of a rule as an aggregating process 
we can, at least, imagine two situations. Either the rules are interpreted as a 
unstructured aggregation process depending on the alternatives and on the 
satisfaction levels. For example: 

If PRICE (A) = low and COLOR (A) = black then DESIRABILITY (A) = very high 

If MA)CSPEED(B) :5: l30 kmlh and PRICE(B) = medium 
and COMFORT(B) = medium then DESIRABILITY(B) = weak 

In this case the final evaluation of the cars depends on a variable unstructured 
collection of facts. We are in a classical expert system process in which each rule is a 
"local" mental aggregating process. By local, we mean, referring to the above 
example, that when the color is black (local value) then the price suffices for 
inferring the desirability, whereas for car B the color does not intervene but the speed 
and the comfort. 

Different is the case where each criterion is seen as an aggregation of 
hierarchically lower criteria. For example the programming quality of a 
microcomputer may be divided into language and quality of user environment, and 
the user environment is further divided into hardware and operating system utilities 
[40]. Then, each rule gives the values of the "functional schema" [80], e.g. for the 
functional schema: 

(LANGUAGE, USER ENVIRONMEN1) ~ QUALITY OF THE MICRO 
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If LANGUAGE is acceptable and USER ENVIRONMENT is good 
then the QUALITY OF THE MICRO is good. 

If LANGUAGE is poor and USER ENVIRONMENT is good 
then the QUALITY OF THE MICRO is bad. 

This suggests that in many cases (diagnosis, evaluation), a knowledge base is nothing 
else than an aggregating machine of concepts. 

Reasoning with schemata as suggested by Levine-Pomerol [80] provides a very 
strong tool for knowledge structuring. As an example, let us give (figure 15.1 
hereafter) the whole aggregating tree of the relevant concepts for defining the 
financial security in a reasoning process about the evaluation of a firm [80]. (In this 
example, the [mancial security is just one of the knowledge bases which cooperate in 
a multi-expert system in order to give a complete risk diagnosis). 

Financial risk 

----- ----Structurnl balance hnmediate solvency 

~~ 
Coverage 
of nee<!; 

Contribution 
of"",ity 

/~ 
Risk on Risks on aurmt 

current assets liabilities 

/\ / ~ I ~ 
Profit- Exceptional Risk on Risk on Risk on Size of 
ability operations inventories receivables op<raling operating d:bt 

~/\ 
Creditors Privileged Maximum debt Av"'ge d:bt 

a-editors authorized used 

Figure 15.1: An aggregating tree (see [80]) 

As already noted in [80] a schema expresses a discrete functional relation which 
may be restated as a decision table. For example, the first above rule, about 
microcomputers, can be written as the following table (Tab. 15.1). 

Language poor poor acceptable acceptable 
Premises Environment poor acceptable good acceptable 
Action Qual. of micro poor acceptable good acceptable 

Table 15.1: DeCIsion table 

This table defines a function from {poor, acceptable, good}x{poor, acceptable, 
good} into {poor, acceptable, good}. The problem is that being discrete, this 
function presents jumps which are regarded as drawbacks in many applications. By 
giving values in [0,1] and replacing the table by a continuous function (e.g. 
QUALITY OF THE MICRO = 0.4 LANGUAGE +0.6 ENVIRONMEN1), Saaty's 
method [129, 130] avoids the gap effect inherent to the discrete world. Fuzzy rules 
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were introduced for the same reason (see Section 15.2). Saaty's method AHP (for 
Analytical Hierarchical Process) is based on hierarchical decomposition of the 
criteria followed by an additive aggregation. Roughly speaking aggregation by 
schemata of rules is a generalization of AHP to symbolic values. 

Rather than replacing the rules by continuous functions, an alternative consists of 
smoothing the discrete function defined by the table 15.1, see [16, 17] and also [118] 
where various interpolation functions are used to pass from a discrete to a continuous 
function. 

It is also noteworthy that a decision table, either complete or incomplete may be 
proceeded via an algorithm such that ID3 [117] in order to produce rules. It paves 
the way for building an aggregating tree from examples (see [118]). Similars ideas 
were developed in rough set theory (see Chapter 14). 

Criticisms of the aggregation by rules. The aggregation process based on rules 
suffers from some drawbacks. Firstly, the construction of the rules is generally 
considered as being too empirical to be reliable and dependent on the knowledge 
engineer [157]. At least, one advantage is that the rules under their symbolic form 
are readable for the decision maker. However, it is true that if the rules are written in 
a messy file of multiple "local ideas", the readability disappears and the result of the 
aggregation depends on the alternatives. When the aggregation is organized along a 
semantic tree as explained above, the process is fully readable. As compared to 
numerical aggregation methods, aggregating by rules has the advantage that the 
appreciation of the alternatives depends on the value, because a table like table 15.1 
is more informative than the function: 

QUALITY OF THE MICRO = 0.4 LANGUAGE + 0.6 ENVIRONMENT 

in which the parameters 0.4 and 0.6 do not depend on the value of LANGUAGE or 
ENVIRONMENT. 

Another criticism pointed out in [66], [157] and emphasized in [67] is that the 
decision maker's preferences are not explicitly considered because the rules are 
generally not centered on the decision maker's objectives. This criticism is certainly 
true and important in the general setting of expert systems. As pointed out in [66], 
the explicit distinction between choice (or user preferences) and descriptive facts is 
fundamental both from decision theory and practice points of view. We will return 
on this question in the next section. 

In the MCDM context, the situation is somewhat different, because the limit 
between facts and objectives heavily depends on the decision maker's interpretation. 
More precisely, it is the decision maker who draws the frontier between objectives 
and "factual" alternatives that cannot be changed. Nevertheless, we agree that it is 
very important to distinguish, as far as possible, the two concepts (see hereafter 
(Evaluating the alternatives) and [67]). 

Supporting the decision maker's choice. Rules can also be used either to direct the 
exploration process in the alternative set. One can find such an example in [119]. In 
the same vein, rules are used in [56] to choose between basic multiattribute solutions 
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obtained by the simplex algorithm. Explaining the result of an aggregation procedure 
can be regarded as an undirect aid to decision makers. In [69] a rule-based system is 
designed, which explains the choice resulting from a additive aggregation procedure 
along a hierarchical tree of criteria similar to AHP [129]. 

Again with the purpose of helping the decision maker, we can mention the 
"recursive idea" of supporting him with a multicriteria method during the choice 
among multicriteria methods. This idea was considered as a desirable issue in [61, 
62] and [3] in the context of multicriteria DSSs. The idea was implemented in [139]. 
Their method is a symbolic one relying on a criterion tree as described in the 
preceding section. [57] and [100] also address the same question by using rules. The 
same idea supporting the choice of the aggregation method is again taken up in [109] 
by using case-based reasoning (see Section 15.1.3). An expert system can also be 
used either to determine the weights according to the context [75] or modify them 
according to the "satisfaction levels" [89]. 

Evaluating the alternatives. It has been frequently reported by practitioners that 
decision makers are often upset by the evaluation of the alternatives according to 
their various criteria. The problem is equivalent to that of building an utility function 
(numerical or symbolic) starting from a given set of alternatives. Numerous papers 
have been devoted to the construction of numerical utility functions (see [43] and 
[113] for surveys). 

To build a symbolic utility function (i.e. whose values belong to an ordered set of 
words) we can imagine to use an expert system. This idea appears in [94]. The 
simplest structure consists of an expert system processing various data to assess the 
value of the alternatives according to each criterion. The same idea was also 
implemented by [154] for customer evaluation. The main criticism against this 
technique is, as above, that it merges choice and descriptive items [66, 157]. 

To overcome this difficulty and to separate the choice (preference) from the 
descriptive (factual) part of the alternatives, it is proposed in [84] to define a 
structure in which each alternative is characterized by a fact base and each criterion 
by a rule base. The rule base is organized as a tree (see Figure 15.2). In this tree the 
concepts involved in one criterion are displayed according to their importance. The 
values are propagated along the tree (see Figure 15.2 for a part of the tree associated 
with the criterion" quality of the service" in the choice of a postal sorting machine). 

According to these ideas, the architecture of the system is as follows (see figure 
15.3). Applying the rules Rj attached to criterion j to fact base Bi attached to 
alternative i produces the value aij of alternative i according to criterionj. 

This architecture has the advantage of separating the reasoning about the choice 
which is contained in the rule base associated to a criterion, from the evaluation 
which is made by the application of this rule base to the facts characterizing each 
alternative. The result of the system is a decision matrix which afterwards can be 
processed by any multicriteria method. 
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Figure 15.2: Defmition of the criterion "quality of the service" 

Rule 12 
IF RISK OF UNINTENTIONAL DROPS=NO IF EMERGENCY STOPPING TIME=LONG 

IF MISDIRECTED PACKAGES=YES IF NUMBER OF MANUAL TRANSFERS=LOW 
THEN RISK OF DAMAGE TO PACKAGES =LOW IF SAFETY FEATURE=NO 

THEN RISK OF MISDIRECTING=HIGH 

Rule 2 Rule 5 
IF RISK OF UNINTENTIONAL DROPS=YES IF EMERGENCY STOPPING TIME=SHORT 
IF NUMBER OF MANUAL TRANSFERS=HIGH IF MISDIRECTED PACKAGES=NO 
THEN RISK OF DAMAGE TO PACKAGES IF SAFETY FEATURE=YES 
=IMPORTANT THEN RISK OF MISDIRECTING=LOW 

Table 15.2: Some rules associated with the tree of the figure 15 .2. 
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Figure 15. 3: Architecture of a multiattribute decision system [84] 

One must also notice that, on the one hand, the difference between concepts used 
in a criterion and those considered as facts describing some characteristics of the 
alternatives is purely interpretative. For example, the "emergency stopping time" can 
be interpreted as a part of the criterion "quality of the service" (Figure 15.2) or it 
could be seen as a characteristic of the sorting machine. On the other hand, one has 
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also to decide among the concepts used to define a criterion. Which one deserves to 
be the root of the tree and consequently becomes one of the criterion used to control 
the choice process. For instance, is the "risk of misdirecting" a criterion for the 
choice of the machine or simply a given element of the "quality of the service"? 
There is no immediate answer, it has to be discussed with the decision maker. 

It is often difficult to distinguish between the design of the alternatives and their 
evaluation. This is particularly the case when rule-based methods are used. A typical 
example of a rule-based system used to evaluate the alternatives according to several 
"high level attributes" is provided by [50]. Then, the choice is made by ELECTRE I 
method. The system also displays explanations about the evaluation. 

Let us also mention the using of cognitive maps and rules to develop a 
multicriteria knowledge-based system [147]. It is noticeable that, in this system, the 
cognitive map appears as a generalization of a AHP-like hierarchical criterion tree. 

Designing the alternatives. In many real situations, the first step is not even to 
assess the alternatives but to understand what the alternatives are. This is generally 
the case for economical decisions where the alternatives actually are scenarios. For 
example, you do not decide between increase or decrease the prices of the product 
but between two or generally much more scenarios, increase the price and begin an 
advertising campaign and differentiate your product (alternative A) vs. decrease the 
price and increase production capacity (alternative B) and so on. The alternatives 
contain different temporal actions and/or consequences. The first difficulty is thus to 
have a clear idea of what an alternative is and how to characterize it before assessing 
it! In our example, assume that the criteria are the net profit, the gross sales and the 
market share. It is not obvious to evaluate alternative A vs. B, it needs very serious 
studies to characterize the results of A and B according to the chosen criteria. 

Let us give another very specific example. The problem is to assess the robustness 
of railway timetables [115]. Given a railway network (RN) and the machines (M) we 
can define theoretical timetables (17). Now, when an incident occurs, the train 
schedules are perturbed and it is evident that the importance of the perturbation 
depends on RN, M, and IT. With an unlimited number of railroads, an incident on a 
train would have no consequence on the other trains, but it is not the case. An 
incident generally delays many trains, but the importance of the total delay depends 
on (RN, M, Tl). Assume that you want to assess an RN investment devoted to 
improve the situation in case of incident. It means that we have to assess alternatives 
of the form (RN, M, Tl) regarding the robustness in case of incident. This is a typical 
case where human reasoning is unable to construct, without help, what we have 
called afully expanded alternative (FEA). The fully expanded alternative associated 
to an alternative (RN, M, Tl) is the real timetable incorporating all the delays caused 
by an incident. To "propagate" the incidents the decision maker needs support. We 
have designed such a multicriteria DSS [115]. In this system, an expert system plays 
the role of the dispatchers, i.e. it makes the decisions, resulting from an incident and 
its consequences. This decision results into actions on the trains perturbed by the 
incident (typical actions are delay, cancel or deviate trains). When the perturbed 
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timetable resulting from the preceding decisions is known, and only when this is 
done, we can assess the importance of the delays, the number of concerned 
commuters and three other criteria. In this framework, the expert system or more 
generally the DSS is "simply" used to bridge the gap between the alternatives and the 
"fully expanded alternatives". We believe that this type of problem will become 
more and more frequent as people addresses more complex problems. In fact, a 
scenario is a sequence of intertwined events and actions but, by using robust actions 
designed to be good enough whatever the realization of the event is, decision makers 
tend to reason on a sequel of actions. This is the reason why we have coined the term 
FEA for a sequence of robust (sub)actions [112]. The point is that computer support 
is necessary to deal with scenarios and FEA complexity. 

Another example of the use of an expert system in order to build an alternative is 
presented in [33] where a frame-based system determines the possible pathology of a 
patient. The plausibility of these pathologies are then evaluated by a multicriteria 
method (PROMETHEE). This example can be interpreted as a first step toward the 
introduction of case-based representation in MCDM. 

15.1.3 Case-based and object representations 

Up to now, as far as we know, very few attempts exist to merge MCDM and case
based reasoning (CBR). However, it seems that analogical reasoning is one of the 
usual mode of decision making. One can suppose that the same is true for 
multicriteria decision making. The principle of case-based reasoning is known: an 
action is undertaken when the current state is more or less similar to one of the 
recorded cases. The similarity is measured by a similarity function defmed on any 
couple of cases. The difficulties are to define a good representation of the cases 
encompassing all the requisite context and to define an adequate similarity function. 
These two difficulties seem to have prevented MCDM designers to put forward 
many case-based systems. One of the first attempt goes back to 1992 with a system 
designed by Angehru and Dutta [2]. In this system the CBR module is intended to 
act as an adviser to "recognize whether a multicriteria approach was used 
successfully in other similar situations before, and provide information about the 
types of alternatives, criteria and preference structures used" [2]. The second role of 
the system is as a "story teller". In this case the system allows the user to replay a 
previous case. The main component of the system is a case library which contains 
structured multicriteria problems with their solutions. This system remains one of the 
most completed examples of CBR structuration for multicriteria problems. 

Another CBR system was developed in [109] to solve the classical problem of the 
choice of the best aggregation procedure. In this system a case is defined by the type 
of the problem (choice, ranking, sorting, ... ), the number of alternatives, the number 
of criteria, the weights, etc ... Then, when a new case is introduced, according to a 
kind of hierarchical similarity function, the most relevant multicriteria method is 
chosen. 
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15. 1.4 Neural networks 

It is argued in [148] that "Decision making is a natural candidate for connectionist 
modeling because it is a complex activity that is generally performed intuitively and 
that can benefit from the computational advantage of the neural parallel 
processing". Several recent works focused on the use of neural networks to represent 
and simulate individual choice behavior. Among the studies related to multicriteria 
decision making and neural networks, one can roughly distinguish two main 
activities concerning two different decision tasks: multiattribute categorisation tasks 
and multiattribute choice tasks (see e.g. [148, 63, 77, 64]). In this subsection, we 
propose a brief survey of some representative studies in this domain. 

Neural networks for decisions associated with multiattribute categorization 
tasks. Assigning multiattribute objects to categories is a standard problem in 
Artificial Intelligence and many studies involving neural networks for leaming and 
simulating categorization rules have been carried out independently of any 
perspective related to decision making. However, in many MCDM problems, 
decisions concerning the alternatives depend on their membership in one or several 
categories. In such problems, the assignment of an alternative to a category is based 
on its multiattribute profile and assignment rules can be automatically extracted by a 
neural network. The basic idea consists of training a neural network on a reference 
set of alternatives classified by the decision maker. Then new alternatives are 
introduced in the system and classified (see [88] and [19]). 

Several dynamic networks methodologies have also been proposed for 
multiattribute categorization tasks (see [63, 77, 64]). They are based on Adaptive 
Resonance Theory (ART) networks proposed in [87]. This kind of networks consists 
of various interconnected modules encoding attributes of alternatives, categories and 
goals of the decision makers (prototypes of categories). The nodes associated to 
categories and attributes are connected to each other with connections modifiable by 
associative leaming, leading to interleve1 resonant feedback (for more details see 
[77]). The assignment of an alternative to a category is possible only if the 
alternative matches the prototype of the category to a certain threshold. When an 
alternative does not match with the prototypes, a new category is created and the 
unassigned alternative becomes its prototype. An interesting variation of the ART 
network called CATEG_ART has been proposed and tested [63, 64]. This network is 
designed to implement a cognitive model based on the Moving Basis Heuristics 
(MBH, see Section 15.3.3) and to automatically produce categorization rules 
synthesized by polynomials. For example, the polynomial: 

p(C)=X 1
2 xl +xix;t+ xj 

is composed of a disjunction of monoms meaning that, if an alternative has been 
placed by the decision maker into category C, it is because it verifies (X, = 2 and X4 

=3) or (X2 = 1 and Xs = 4) or X3=5. Once the neural network has been trained on the 
reference set of alternatives, the assignment rules created allow the classification of 
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new alternatives whom categories are unknown. The category of a new alternative 
will be the one of the monomial selected by resonant competition. 

Neural networks for decision making in multiattribute choice tasks. We briefly 
present here a dynamic neural network methodology proposed in [148] for 
multiattribute decision making. Unlike some standard networks that fit reference data 
by choosing optimal weights or coefficients within a predetermined mathematical 
model, the network is regarded here as a descriptive model aiming at approximating 
the decision maker behavior when facing a multicriteria problem. Consider a set of 
alternatives A = {a[, ... , am} where each alternative is described by n attributes X[, ... , 
Xn • Suppose that the attractiveness of each alternative ai with respect to each attribute 
J0 has been evaluated by the decision maker and quantified by positive coefficients 
wij for i = 1, ... , m, j = 1, ... , n. Then, as proposed in [148], we can consider the 
following decision network's architecture constructed from the prior knowledge of 
the decision situation (see figure 15.4, adapted from [148]). 

Figure 15.4: A network's architecture for multiattribute decision making 

This dynamic neural network consists of two connected subnetworks; the left one 
is composed of competing attributes assemblies representing "the current state of 
decision maker's mind" (what are the current focused attributes); the right one 
corresponds to competing alternatives assemblies representing the current potential 
decision. Full lines represent excitatory and dashed lines represent inhibitory 
connections. Ix and IA are inhibitory assemblies that mediate competition in left and 
right subnetworks respectively. For example, when inhibitory neurons of Ix get 
exitation from all the assemblies in the subnetwork, they return inhibition provoking 
the activity decay of some attributes. Arrows of type (J0, ai) represent excitatory 
connections weighted by the coefficient wij (if wij exceeds a certain threshold, the ai 
assemblies is activated each time attribute X; is scanned). 

After an initial activation, the network is autonomous and evolves dynamically. 
Most of the time, it converges towards a stable state. However, when dynamic 
variations of thresholds are allowed, the network may also adopt a periodic or 
chaotic behavior with some stable periods. When stability is reached, the activated 
alternatives make up the selection proposed by the network. 

Notice that an inhibition parameter controls the average number of 
simultaneously activated attributes in the left networks. It may be used for 
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representing more or less requiring dominance rules to compare the alternatives 
(when only one attribute is activated at each time, the decision process can be 
compared to the "elimination by aspect" process, see [145, 146]). Another inhibition 
parameter attached to the IA assemblies controls the level of competition among the 
alternatives and therefore the average number of alternatives that can be activated at 
each time. Other parameters (noise factors) control the competition and inertia 
among the alternative. Depending on the values attached to these parameters, the 
network represented on figure 15.4 can simulate various decision behaviors. Among 
them let us mention the elimination by aspects, the dominance rule, conjunctive and 
disjunctive models and lexicographic decision rules (for more details see [148]). 

15.1.5 USing classical logic 

Besides traditional representations by rules, frames and objects, many AI researchers 
are fond of logic-based languages, such as PROLOG. Some of these researches 
received attention in MCDM. First of all, an application of PROLOG to multicriteria 
decision is proposed in [120]; it is observed that using a PROLOG rule such that: 

COMFORT(X) 1\ TECH. CHARACT. (X) ~ QUALITY (X) 

amounts to a lexicographic search on criteria COMFORT and TECH. CHARACT in 
this order of importance. A second application concerns preferences. The idea 
consists of translating the preferences of the decision maker about the criteria into a 
preorder on the criteria endowed with desirable properties. Such a system has been 
developed in [101]. Namely, let J be the set of criteria and 2} the set of parts of J. 
We can define on 2} a relation >} reflecting the importance of criteria coalitions 
using the following rules: 

V' I, K, L e 2}, I>}K and K>}L ~ I>}L 
V'I,K,Le 2}, I>}K ~ IuL>JK 
V' I, K e 2}, I>} K ~ not(K >J I) 
V' I,K,Le 1', I>}Kand InL=0 ~ IuL>}KuL 

(transitivity) 
(amplification) 
(asymmetry) 
(additivity) 

PROLOG programming is particularly well suited to make the heavy calculations 
introduced by the above rules which complete>} from the partial preorder given by 
the decision maker. When the relation is completed, it can be used to replace the 
weights in outranking methods such that ELECTRE III for example [134]. It suffices 
to state: a is strictly preferred to b iff U / a Pj b} >} U / b Pj a} 

The EXTRA system proposed in [10 I] is entirely developed from these 
PROLOG-based ideas. In an additive framework, this method about comparison of 
sets of criteria amounts to compare different sums of weights. It is reminiscent of 
Churchman and Ackoff revisited [70]. 

Many other examples showing the interest and relevance of logic for preference 
modeling should be considered. For example, muItivalued logic, and most of non
standard logics may be used advantageously to construct sophisticated models of 
preferences. Since this domain has steadily developed in the IO past years the next 
section is devoted to this topic. 
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15.1.5 USing classical logic 

Besides traditional representations by rules, frames and objects, many AI researchers 
are fond of logic-based languages, such as PROLOG. Some of these researches 
received attention in MCDM. First of all, an application of PROLOG to multicriteria 
decision is proposed in [120]; it is observed that using a PROLOG rule such that: 

COMFORT(X) 1\ TECH. CHARACT. (X) ~ QUALITY (X) 

amounts to a lexicographic search on criteria COMFORT and TECH. CHARACT in 
this order of importance. A second application concerns preferences. The idea 
consists of translating the preferences of the decision maker about the criteria into a 
preorder on the criteria endowed with desirable properties. Such a system has been 
developed in [101]. Namely, let J be the set of criteria and 2} the set of parts of J. 
We can define on 2} a relation >} reflecting the importance of criteria coalitions 
using the following rules: 

V' I, K, L e 2}, I>}K and K>}L ~ I>}L 
V'I,K,Le 2}, I>}K ~ IuL>JK 
V' I, K e 2}, I>} K ~ not(K >J I) 
V' I,K,Le 1', I>}Kand InL=0 ~ IuL>}KuL 

(transitivity) 
(amplification) 
(asymmetry) 
(additivity) 

PROLOG programming is particularly well suited to make the heavy calculations 
introduced by the above rules which complete>} from the partial preorder given by 
the decision maker. When the relation is completed, it can be used to replace the 
weights in outranking methods such that ELECTRE III for example [134]. It suffices 
to state: a is strictly preferred to b iff U / a Pj b} >} U / b Pj a} 

The EXTRA system proposed in [10 I] is entirely developed from these 
PROLOG-based ideas. In an additive framework, this method about comparison of 
sets of criteria amounts to compare different sums of weights. It is reminiscent of 
Churchman and Ackoff revisited [70]. 

Many other examples showing the interest and relevance of logic for preference 
modeling should be considered. For example, muItivalued logic, and most of non
standard logics may be used advantageously to construct sophisticated models of 
preferences. Since this domain has steadily developed in the IO past years the next 
section is devoted to this topic. 
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15.2 MODELS BASED ON NON-CLASSICAL LOGIC 

Most of decision support activities require the use of mathematical models 
representing the available knowledge about the practical decision problem to deal 
with. In real decision situations, knowledge representation is complicated by the 
presence of conflicting opinions, and the uncertainty or imprecision about the 
consequences of potential acts or decisions. In the face of such complexity, decision 
support systems involve specific tools for preference modeling and reasoning with 
imperfect information. In this respect, logic languages are useful because they allow 
the compact representation of the various objectives of the agents and their 
preferences. This section illustrates the interest of non-classical logics for preference 
modeling and preference aggregation in the context of imperfect information. 

15.2. 1 The use of [0, 1 J-valued logic 

Preference modeling with valued relations. Preference modeling in a decision 
problem with a finite number of alternatives aims at providing, for all possible pairs 
(a, b) of alternatives, answers to questions of type: "is a comparable to b", "is a 
indifferent to b", "is a preferable to b"? However, in most applied problems, experts 
are reluctant to make categorical assertions about alternatives and the available 
preference information is rarely sufficient to provide yes/no type answers to these 
questions. If nevertheless, the expert or the decision maker is constrained to produce 
crisp judgments when comparing alternatives, he/she will have to sacrifice a large 
part of his expertise and the resultant mathematical model may lose much of its 
adequacy to the real situation. Thus, modeling preferences by valued (or fuzzy) 
relations provides a more flexible language, allowing the expression of intermediate 
degrees of preferences, between the categorical "yes" or "no". It does not prevent the 
analyst or the decision maker to draw clear-cut conclusions in a later stage of the 
decision process. 

The use of fuzzy sets for preference modeling has been deeply investigated since 
the seminal works of Belman and Zadeh [8] and Orlovski [96] and the language of 
fuzzy relations has shown to be useful for preference modeling and MCDM (see e.g. 
[14,18,20,27,47,48,49,73,74,97,98,99,103,104,105, 122, 152, 153]). 

Basically, valued relations are used in multicriteria methods to represent either ill
defined or ill-known preferences. The second case mainly occurs when a preference 
relation must be constructed from uncertain criterion values. This point will be 
illustrated in Section 15.2.4. In the first case, valued relations are mainly used to 
represent a continuum of situations from total indifference to strict preference, even 
if criterion values are precisely known. Consider for instance a multicriteria problem 
with a finite discrete set of alternatives A and a set of criterion function gj' j = 1, ... , 
n, to be maximized. Following [125, 22, 104,47, 105], a valued strict preference 
relation Pj can be constructed on each dimensionj from criterion values by setting: 

(15.1) 

where jj is a real-valued function, non-decreasing of the first argument, non
increasing of the second argument and such that! (x, x) = ° for all possible x. In a 
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similar way, a valued indifference relation ~ can be constructed on each dimensionj 
from criterion values, using the following definition: 

(15.2) 

Examples of such relations are depicted on figure 15.5 

Pj(a, b) 

I 

o gj(a) - gj(b) 

Figure 15.5: Valued preference relations defined from criterion values 

In this section, we will only consider models in which preferences between 
alternatives are described by fuzzy relations whose valuation lies between ° and I. 
From the mathematical viewpoint, a fuzzy relation R defmed on a set A is a fuzzy 
subset of the Cartesian product AxA. It is characterized, by a membership function v 
defming, for each pair (a, b), the value v(R(a, b» E [0, I] representing the 
confidence we have in the statement "the relation R holds for the pair (a, b)". Such 
relations both extend additive preference models used in difference measurement 
[72] and in threshold measurement [137]. From a logical viewpoint, any binary 
relation R can be seen as a binary predicate R(x, y) interpreted in a multivalued logic 
whose semantic domain is [0, I] (any truth value within the unit interval is 
admissible; ° denotes the "false" and I denotes the "true"). Hence, v(R(a, b» 
represents the truth value of the closed formula R(a, b). In order to represent more 
complex propositions about preferences, this language must be extended to all well
formed formulae of the standard predicate calculus. Denoting WFF the set of well
formed formulae, the interpretation of any complex formula F in WFF is defmed 
from the interpretation of its atomic components using the following rules: 

(15.3) 
(15.4) 
(15.5) 
(15.6) 
(15.7) 
(15.8) 
(15.9) 

v(-.A) = N(v(A» 
v(A /\ B) = T(v(A), v(B» 
v(A v B) = V(v(A), v(B» 
v(A ~ B) = Ir{v(A), v(B» 
v(A == B) = Er{v(A), v(B» 

v(3x A(x» = supiv(A(x») 
v(''V'x A(x» = itifx(v(A(x») 

where A and B are well-formed formulae, -', /\, v, ~, and == are usual logical 
connectives representing negation, conjunction, disjunction, implication and 
equivalence respectively, N is a function defined from [0, 1] onto itself, T, V, fr, ET 
are functions defined from [0, 1]2 into [0, 1] as follows: 

- N(x) = <1>-1(1 - <I>(x» for some automorphism <I> on [0, 1], 
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- T(x, y) is a symmetric, associative and monotonic function with 1 as neutral 
element (t-norm), 

- Vex, y) is a symmetric, associative and monotonic function with 0 as neutral 
element (t-conorm). Usually, Vex, y) = N(T(N(x), N(y») so as to preserve the De 
Morgan law, 

- /risthequasi-inverseofTdefinedby:lr(x,y)=sup{eE [0, I]: T(x,e):5;y} 
- ET is defined as a double implication: Er(x, y) = T(Ir(x, y), Ir{y, x» 

In this context, a formula F in WFF is said to be a tautology when v(F) = 1 for all 
interpretations v and a contradiction when v(F) = 0 for all interpretations v. 

Using this language, any logical property or concept expressed using a classical 
preference relation can be extended in the context of fuzzy preferences [102]. As a 
first example, we show how the semi-transitivity property attached to semi-orders is 
extended when preferences are fuzzy. For crisp binary relations, semi-transitivity is 
defined as follows [27, 108]: 

"\Ix "\Iy "\Iz"\lw [(R(x, y) /\ R(y, z» ~ (R(x, w) v R(w, z»] 

In the multivalued logic considered above, this logical formula is true if and only 
if the following condition holds for any t-uple (x, y, z, w): 

v [(R(x, y) /\ R(y, z» ~ (R(x, w) v R(w, z))] = 1 

Using equations (15.3)-(15.9), the above equation can be rewritten as follows: 

/r(v(R(x, y) /\ R(y, z», v(R(x, w) v R(w, z») = 1 
v(R(x, y) /\ R(y, z» ~ v(R(x, w) v R(w, z» 

T(R(x, y), R(y, z» :5; V(R(x, w), R(w, z» 

Hence, choosing T(x, y) = min(x, y) leads to a familiar condition considered by 
many authors as the natural extension of semi-transitivity in the context of fuzzy 
preferences. It is often used in the definition of fuzzy semi-orders (see [47, 108]): 

"\Ix "\Iy"\lz "\Iw, min(R(x,y), R(y, z»:5; max(R(x, w), R(w, z» 
It has been shown in [104] that this property hold for any relation Pj defmed from 

criterion values as presented before (see equation (15.1». 

As a second example, let us show how the concept of non-dominated alternatives 
is translated when preferences are valued. Consider a (crisp) weak preference 
relation defined on a finite set X of alternatives. Within X, an element x is said to be 
non-dominated if and only if no other element in X is strictly preferred to x. This 
property can be formalized as follows: 

(15.10) ND(x) == ("\I y (R(y, x) ~ R(x, y») 

with the following predicates: 
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Symbol 
ND 
R 

Arity 
1 
2 

Domain 
x 

XxX 

Interpretation 
ND(x): "x is non-dominated" 

R(x, y): "x is weakly preferred to y" 

Assuming equation (15.10) is a tautology, we get: 

v[ND(x) == (V y (R(y, x) ::::> R(x, y»)] = 1 
and therefore: Erlv[ND(x)], v[V y (R(y, x) ::::> R(x, y»)]) = 1. 

Hence v(ND(x»= v[Vy(R(y,x)::::>R(x,y»] 
= infyeX v[R(y, x) ::::> R(x, y)] = infyeX IIiR(y, x), R(x, y)] 

Moreover, whatever the t-norm Twe consider, we get: 
v(ND(x» = 1 <=> infyeX IIiR(y, x), R(x, y)] = 1 

<=> VYEX, IIiR(y, x), R(x, y)] = 1 
<=> VYEX, R(y, x) ~ R(x, y) 

For instance, if T is the Lukasiewicz t-norm defined by T(a, ~) = max(a + ~ -1, 0), 
then Irla, ~) = 1 - max(a - ~, 0) and we get: 

v(ND(x» = 1 - sup yeX max(R(y, x) - R(x, y), 0) 

Hence, in the context of fuzzy preference relations, the subset X'D of non
dominated elements becomes a fuzzy subset of X characterized by membership 
values v(ND(x» for all x in A. From this fuzzy subset, we can derive a crisp subset 
UND defmed as the core of ND (e.g. the crisp subset of elements in A such that 
v(ND(x»= 1). Hence we obtain: 

X'D = {(x, 1 - sup yeX max(R(y, x) - R(x, y), 0», x E X} 
)(lND = {x EX: VYEA, R(y, x) ~ R(x, y)} 

Notice that we came up to the definitions of non-dominated sets X'D and )(lND 

exactly as they have been originally proposed in [96]. 

[0, I)-valued logic for preference aggregation. Suppose now that the decision 
maker is able to formulate logical principles specifYing what should be a good 
alternative or a well-stated preference. [0, I]-valued logic can be used to support the 
definition of an aggregation function reflecting these principles through a purely 
numerical process. This can be illustrated by the following logical sentences: 

LS 1: "An alternative is relevant iff there exists at least one important criterion 
according to which it is good" 

LS2: "An alternative is good iffit is good according to all the important criteria" 
LS3: "An alternative a is opposable to b iff there exists at least one important 

criterion according to which a is better to b" 
LS4: "An alternative a is preferred to b iff a is better than b according to all the 

important criteria" 

Consider the following predicates: 
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SJ!.mbol AriQ: Domain Intere.retation 
relev 1 A relev(x): "x is relevant" 
good 1 A good(x, y): "x is good" 
imp 1 N imp(j): ''j is important" 
pref 2 AxA prej(x, y): "x is preferred to y" 

goodl 2 AxN goodl(x,j): "x is good according to criterionj" 
oppo 2 AxA oppo(x, y): "x is opposable to y" 
prefl 3 AxAxN prefl (x, y,j): "x is preferred to y according to j" 

where A is the set of alternatives and N = {1, ... , n} is the set of criteria. Using these 
symbols, logical sentences LS 1, ... , LS4 can be represented by the following 
equations: 

Vx [3j (imp(j) I\. goodl(x,j»;: relev(x)] 
Vx [V j (imp(j):::> goodl(x,j»;: good(x)] 

VxVy [3j (imp(j) I\.prefl(x,y,j»;: oppo(x, y)] 
VxVy [V j (imp(j):::> prefl(x, y,j»;: prej(x, y)] 

If we try to combine these equations with equations (15.3)-(15.9), denoting r(x) = 

v(relev(x», g(x) = v(good(x», o(x, y) = v(oppo(x, y», p(x, y) = v(P(x, y», Xj = 

v(goodl(x, j» the degree to which x satisfies the /h objective, Wj = v(imp(j» the 
degree to which criterion j is important, pix, y) = v(prefl(x, y, j))) we obtain the 
following results: 

r(x) = V(T(w\, Xl), ... , T(Wm xn» 
g(x) = T(h(w\, Xl), ... , h(wm Xn» 

O(X,y) = V(T(W\,PI(X,y», ... , T(wmPn(X,y») 
p(X,y) = T(Ir(w\'PI(X,y», ... , h(wmPix,y») 

For instance, choosing T(x, y) = min(x, y) and V(x, y) = max(x, y) we get: 

r(x) = max(min(wI, Xl), ... , min(wm xn» 

{

I if Vj e N, Xi ~ Wi 
g(x) = 

min{xi: Xi < Wi} otherwise 

o(x,y) = max(min(w\,PI(X,y», ... , min(wn,pix,y») 

{

I ifVjeN, Pi(x,y)~wi 

p(x, y) = . { ( ) ( ) } th . mm Pi x,y : Pi x,y <Wi 0 erwlse 

Usually, a coefficient Wk = 1 is attached to the most important criterion and to all 
other criteria of same importance. In this case, r(x) and g(x) are compromise 
aggregators taking their values in the interval [min{x/jeN}, max{x/jeN}]. r(x) is a 
weighted maximum of partial satisfaction indices (see [36]). In the function g(x), 
coefficients Wj can be understood as aspiration levels since g(x) is a minimum 
operator restricted to criterion values that do not completely satisfy the aspirations of 
the decision maker. In the same way, o(x, y) and p(x, y) define fuzzy relations 
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reflecting a compromise between one-dimensional preferences. Many other 
sophisticated operators have been studied for aggregating fuzzy sets or preference 
relations. The interested reader should consult [29, 160,38,47,54,46, 12]). 

These illustrative examples show that multivalued logics associated with fuzzy 
sets provide powerful algebraic tools for the systematic and careful extension of 
conventional preference models. In the framework of MCDM, the main interest of 
constructing and processing fuzzy preferences is the increased expressiveness of 
models and their ability to preserve continuous dependence between inputs (criterion 
values) and outputs (recommendations) in decision support systems (see [104]). An 
alternative approach to extend the conventional language of preference is to use 
another non-classical logic allowing the explicit representation of partial 
inconsistencies and conflicting information. The following section provides some 
recent works relying on Belnap's logic and its extensions. 

15.2.2 The use of Belnap's logic and its extensions 

The basic assumption in Belnap's logic [9, 10] is that the extension of the formula 
-,A is not necessarily coincident with the complement of the extension of A. Such an 
assumption avoids the systematic inconsistency of the sentence A /\-,A 

(inconsistency can be recovered with A /\ -A where - denotes the complement of A, 
i.e. an interpretation belongs to -A if and only if it does not belong to A). In the same 
way, A v -,A is no longer a tautology. Such a logic is well fitted to the representation 
of partial ignorance and contradiction. Using such a logic is of particular interest in 
the context of MCDM where preference modeling requires specific tools to better 
handle the possibly incomplete or conflicting information. 

In this context, preference modeling implies to decide whether an alternative a is 
preferred to an alternative b or not. As mentioned above, fmding decisive arguments 
is not always possible, even after a careful investigation of the possible criterion 
values of alternatives a and b. Basically, four typical situations can be distinguished: 

s 1: there exist strong arguments supporting the preference of a over b and no 
significant argument conflicting with this preference, 

s2: there exist weak arguments supporting the preference of a over b and 
sufficiently strong arguments are conflicting with this preference, 

s3: there exists little argument supporting the preference of a over b but there 
exists no sufficient argument for deciding that a is not better than b, 

s4: there exists strong arguments supporting the preference of a over b but there 
exists also strong arguments conflicting with this preference. 

The first and second situations are usual and can be well represented with the 
classical logic. In the first case (sl), the preference of a over b is well justified and 
P(a, b) must be interpreted as true; in the second case (s2), the preference of a over 
b is not justified and P(a, b) must be interpreted asfalse. The two other situations are 
less conventional. In situation s3, interpreting P(a, b) as true seems irrelevant 
because of the lack of positive reasons justifying this preference, but interpreting 

15-18 USE OF ARTIFICIAL INTELLIGENCE IN MCDM 

reflecting a compromise between one-dimensional preferences. Many other 
sophisticated operators have been studied for aggregating fuzzy sets or preference 
relations. The interested reader should consult [29, 160,38,47,54,46, 12]). 

These illustrative examples show that multivalued logics associated with fuzzy 
sets provide powerful algebraic tools for the systematic and careful extension of 
conventional preference models. In the framework of MCDM, the main interest of 
constructing and processing fuzzy preferences is the increased expressiveness of 
models and their ability to preserve continuous dependence between inputs (criterion 
values) and outputs (recommendations) in decision support systems (see [104]). An 
alternative approach to extend the conventional language of preference is to use 
another non-classical logic allowing the explicit representation of partial 
inconsistencies and conflicting information. The following section provides some 
recent works relying on Belnap's logic and its extensions. 

15.2.2 The use of Belnap's logic and its extensions 

The basic assumption in Belnap's logic [9, 10] is that the extension of the formula 
-,A is not necessarily coincident with the complement of the extension of A. Such an 
assumption avoids the systematic inconsistency of the sentence A /\-,A 

(inconsistency can be recovered with A /\ ~A where ~ denotes the complement of A, 
i.e. an interpretation belongs to ~A if and only if it does not belong to A). In the same 
way, A v -,A is no longer a tautology. Such a logic is well fitted to the representation 
of partial ignorance and contradiction. Using such a logic is of particular interest in 
the context of MCDM where preference modeling requires specific tools to better 
handle the possibly incomplete or conflicting information. 

In this context, preference modeling implies to decide whether an alternative a is 
preferred to an alternative b or not. As mentioned above, fmding decisive arguments 
is not always possible, even after a careful investigation of the possible criterion 
values of alternatives a and b. Basically, four typical situations can be distinguished: 

s 1: there exist strong arguments supporting the preference of a over b and no 
significant argument conflicting with this preference, 

s2: there exist weak arguments supporting the preference of a over b and 
sufficiently strong arguments are conflicting with this preference, 

s3: there exists little argument supporting the preference of a over b but there 
exists no sufficient argument for deciding that a is not better than b, 

s4: there exists strong arguments supporting the preference of a over b but there 
exists also strong arguments conflicting with this preference. 

The first and second situations are usual and can be well represented with the 
classical logic. In the first case (sl), the preference of a over b is well justified and 
P(a, b) must be interpreted as true; in the second case (s2), the preference of a over 
b is not justified and P(a, b) must be interpreted asfalse. The two other situations are 
less conventional. In situation s3, interpreting P(a, b) as true seems irrelevant 
because of the lack of positive reasons justifying this preference, but interpreting 



USE OF ARTIFICIAL INTELLIGENCE IN MCDM 15-19 

Pea, b) as false is not better justified. Actually, the most natural interpretation for 
preference is unknown, since we lack of decisive arguments. In situation s4, it is 
also impossible to decide whether Pea, b) is true or false. However, the lack of 
decisiveness is not due to the absence of significant information but to the strong 
conflict between arguments supporting preference and non-preference. In order to 
distinguish this situation from the previous one, interpreting Pea, b) as contradictory 
seems natural. Thus four truth values t, f, u, k representing the true, false, unknown 
and contradictory are considered so as to distinguish the decision situations sl, ... , 
s4. More precisely, denoting M(a, b) (resp. /).-,P(a, b» the presence of significant 
arguments supporting Pea, b) (resp. -,P(a, b», the possible interpretations of the 
atomic formula P are defined as follows: 

(15.11) 
(15.12) 
(15.13) 
(15.14) 

v(P) = t ¢:::> M /\ -,/)'-,P 
v(P) = f ¢:::> -.M /\ /)'-,P 

v(P) = u ¢:::> -.M /\ -./).-,P 
v(P) = k ¢:::> M /\ /)'-,P 

The interpretations of non-atomic formulae can be derived using the following 
truth tables (see [28]): 

v(A /\ B) = J".(v(A), v(B» 
v(A v B) = !v(v(A), v(B» 
v(A ;:) B) = f::,(v(A), v(B» 
v(A == B) = J".ife:;(v(A), v(B»Je:;(v(B), v(A») 

with the following truth tables: 

J". t k u f fv t k u f fe:; t k 

t t k u f t t t t t t t k 
k k k f f k t k t k k t t 
u u f u f u t t u u u t k 
f f f f f f t k u f f t t 

u f 
u f 
u u 
t k 
t t 

Moreover, for any predicate A(x) with the instance domain {Xl. ... , xn}, the 
interpretation of quantified formulae is given by: 

v(3x A(x» !v(V(A(XI», ... , v(A(xn))) 
v(Vx A (x» = J".(V(A(XI», ... , v(A(xn))) 

The interest of a four-valued logic to express ignorance and partial inconsistency 
is well known in the Artificial Intelligence community since the important work of 
[9, 10] and this idea was even present earlier in the literature (see [32]). However, 
surprisingly enough, the idea of adapting such a logic to knowledge representation 
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and preference modeling in the context of MCDM is relatively recent [28, 141, 142, 
143, 144]. We present now an illustrative example of the use of this logic in MCDM. 

Four-valued logic for preference aggregation. Multicriteria aggregation aims at 
synthesizing possibly conflicting preferences. At this step, the four-valued logic can 
be used to obtain a compact representation of overall preferences, allowing the 
typical situations (preference, absence of preference, conflict, ... ) to be clearly 
distinguished [144]. For example, coming back to the multicriteria problem with n 
criterion functions gj,j = 1, ... , n, defining n preference relation (e.g. semi-orders) on 
the set of alternatives (see equation (15.1». By definition, a set function m measuring 
the importance of each coalition of criteria fulfills the following conditions: 

m(2N) = 1, m(0) = 0 
V A, B E 2N

, A c B => m(A)::;; m(B) 

where N = {I, ... , n} is the set of criteria indices. 

Considering the following coalitions: 

[a P b] = {j E {l, ... , n}: gia) - gib) > qj} 
[bPa] ={jE {l, ... ,n}:gib)-gia»qj} 

we defme the following conditions: 

(15.15) 
(15.l6) 

/lP(a, b) <=> m([a P bJ) > 'Y 
A-.P(a, b) <=> m([b P aD> 0 

Hence equations (15.11)-(15.14) lead to a four-valued relation synthesizing the main 
possible situations in the aggregation. Figure 15.6 illustrates the four basic situations 
when m(J) represents the proportion of voters in the coalition J, for any J c 2". The 
true reflects a significant consensus for the preference P(a, b) without any significant 
discordant criterion, the unknown represents a situation where the coalitions 
supporting the preference are not significant and the contradictory reveals the 
presence of strongly conflicting coalitions of criteria. 

m([bPa]) 

p(a, b)=? 

f k 8 - _ ......... -_ ... -.---'" -_ ... -

u : t 
I 

y m([a PbD 

Figure 15.6: Four-valued logic for preference aggregation 
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Continuous extension of the four-valued logic for preference modeling. The 
previous construction has been extended in [106] for the aggregation of fuzzy 
preference relations. In [106], a continuous extension of the four-valued logic has 
been introduced. It is based on a continuum of truth values characterized by the set 
of 2x2 matrices whose elements Mij verify the following conditions: 

Vi,jE {1,2}, Mij"?O 
Mll + M 12 + M21 +M22 = 1 

min{MI2' M2d = 0 

The interpretation of such matrices is very intuitive since any proposition P of the 
predicate calculus is represented by the matrix: 

(
!(P) k(P») 

v(P) = u(P) t(P) 

where j{P), k(P), u(P), t(P) denote the degree to which the proposition P is true, 
contradictory, unknown and true. The functions f, k, u and t are defined on the set of 
well-formed formulae and valued in the unit interval. Following the approach 
adopted in the four valued logic, it is possible to define functions f, k, u and t by 
balancing positive and negative arguments to justify any proposition. Denoting c(P) 
and c( -,P) the confidence we have in propositions /1P and /!,.-,P respectively, a 
possible translation of equations (15.11 )-( 15 .14) using multivalued logic is: 

(15.17) 
(15.18) 
(15.19) 
(15.20) 

t(P) = min(c(P), 1 - c(-,P») 
k(P) = max(c(P) + c(-,P) - 1,0») 
u(P) = max(1 - c(P) - c(-,P), 0» 
j{P) = min(1 - c(P), c(-,P» 

Logical operations like negation, conjunction, disjunction and implication have 
been defined in this framework but there is no space in this chapter for presenting 
them in details. For more details see [106]. We present now the possible use of such 
a continuous extension for preference aggregation. 

Continuous extension of four-valued logic for preference aggregation. Another 
feature of this logic is the possibility to refine four-valued preference models 
resulting from the aggregation of multiple criteria. The basic idea is to allow the 
continuous transition from /1P(a, b) to -,/1P(a, b), and from /!"-,P(a, b) to 
-,/!"-,P(a, b). Equations (15.15)-(15.16) do not allow this continuity since /1P(a, b) 
and /!"-,P(a, b) are 0-1 predicates defmed by using cutting thresholds y and o. 
However, these predicates could be interpreted within the framework of multivalued 
logic. For example, consider the following definitions: 

(15.21) c(i3.P(a,b)) = mi{j, max( 0, m([a;b~)y~ y-) JJ 
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(15.22) c(M(a,b» = mi{I' max( 0, m([b ;a2)0~ 0-) J) 
where i is the threshold below which the preference is not defensible, y + is the 
threshold beyond which the preference is well supported, 8- is the threshold below 
which the preference P(a, b) remains possible, 8+ is a veto threshold beyond which 
the preference P(a, b) is no longer defensible ('/ ~ y- ~ 8- and y+ ~ 8+ ~ 8} The 
resulting truth value of P(a, b) is characterized by t(P(a, b», k(P(a, b», u(P(a, b», 
f(P(a, b» defined by equations (15.17)-(15.20). The possible values of these indices 
are depicted on figure 15.7 (to be compared to figure 15.6), for i = 0.3, "t = 0.5, 8-
=0.1,8+=0.3. 

j{p(a. b» k(p(a. b)) 
u(P(a. b)) I(P(a. b» 

o 

Figure 15.7: Possible truth values for the preference P(a, b) 

15.2.3 Preference expression as a reasoning process 

The previous examples on Belnap's logic illustrate how preferences can emerge from 
a reasoning process. This reasoning process depends on context and information 
about future. The reasoning must be non-monotonic because the knowledge about 
future may change. Thus, we enter into the realm of non-classical logics and various 
proposals have been made to accommodate these problems. A first attempt using 
first order logic with "Truth Maintenance Systems" [30] can be found in [140]. 
Further works inspired by the default logic [138] distinguish between beliefs and 
preferences, the latter depending on states of the world [31]. A recent work [90] aims 
at merging case-based reasoning and default reasoning (or negligibility). In fact, the 
idea of distinguishing between beliefs (information about future) and preferences 
(utility of the decision maker about results) goes back to Savage [131]. In [131] a 
probabilistic information is deduced from the preferences on the actions. However, 
in practice, a probabilistic a priori information is required to derive usual decision 
criteria, this is the "Bayesian" point of view. Unfortunately, the available information 
is generally poorer than requested by the model in terms of accuracy and quantity. 
Several suggestions have been made to cope with partial and rough information 
about future and relax the assumption of a probalilistic world. One can use non-
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additive measures such as belief functions [132] and then, apply a so-called 
"pingnistic" transformation to deduce manageable probabilities and decision criteria 
[135]. One can also decide to replace probabilities by possibilities. This domain of 
"qualitative decision theory" is nowadays very active. A complete reconstruction of 
Decision Theory under Uncertainty [92, 131] within a possibilistic framework has 
been developed in [39, 34], while [76, 42] also parallel Savage's framework for a 
qualitative decision theory. 

Actually, it is worth noticing that there is a formal analogy between decision 
under uncertainty and multicriteria decision making. In Savage [131], each 
elementary event belonging to the set S of states of nature entails a different result 
for an action a. The result (or consequence) is a function r(a, s). Assume that s is a 
criterion and a an alternative, the evaluation of the alternative a according to 
criterion s is also a function r(a, s). Thus, subsets of S may be regarded as a coalition 
of criteria and the relative likelihood of states or events as the relative importance of 
criteria or coalitions. This striking analogy is well illustrated in [34, 35, 42]. These 
papers emphasize the relationships between multicriteria decision making and 
various models for decision making under uncertainty proposed by AI people. Let us 
give, in the next section, a flavour of the possiblilistic approach of decision under 
uncertainty. 

15.2.4 Possibility theory and qualitative decision theory under 
uncertainty 

One important source of complexity in multicriteria decision problems is the 
imperfect knowledge of the consequences of alternatives. In this context, preference 
modeling requires the use of specific tools and concepts allowing the representation 
of partial ignorance and the comparison of uncertainty distributions. As mentioned 
above, the classical approaches to decision making under uncertainty are based on 
probabilities. Even before Savage's important contribution, the initial axiomatic 
approach proposed by von Neumann and Morgenstern [92] advocates the use of the 
expected utility criterion, based on the use of numerical probabilities and utilities 
about the consequences of alternatives. However, when the information about the 
relative likelihood of outcomes is not sufficient to define precise probabilities the 
standard expected utility criterion becomes useless. Several ways to overcome this 
difficulty have been investigated, based on the use of belief functions [132, 58, 59], 
or capacitities [25] or possibilities [39]. 

Since only poor information is available in many situations, it is also difficult to 
construct a cardinal utility function for the comparison of the consequences of 
alternatives. In many situation a more qualitative decision theory based on ordinal 
information is necessary. This shows the specific interest of considering the concepts 
and tools introduced in the field of Artificial intelligence. The classical Artifical 
Intelligence community is traditionally attached to purely symbolic approaches for 
knowledge representation and some of the models may be used advantageously in 
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the context of decision making. For example, possibility theory is one of the most 
popular alternatives to classical probability theory for the representation of 
uncertainty in preference models (see [37, lOS]). In order to show how uncertainty 
and preference can be jointly handled for a qualitative decision theory, we briefly 
recall the possibilistic counterpart of the von Neumann and Morgenstern expected 
utility, as it has been introduced in [39]. 

Consider a decision problem where the consequences of alternatives on some 
dimension} are uncertain and characterized by possibility distributions defined on a 
finite set of consequences X. Formally, each alternative is represented by a lottery 1t, 

that is a function defined from X into [0, 1] and such that 1t(x) represent the 
possibility of consequence x with sUPxeX{1t(x)} = 1. Note that 1t(x) = ° means that 
the consequence x is impossible for the alternative represented by 1t, 1t(x) = 1 means 
that x is a really plausible (unsurprising) consequence, and 1t(x):;; 1t(y) means that 
consequence y is at least as likely as consequence x. It is shown in [39] that, under a 
set of reasonable conditions (transitive and complete comparability of lotteries, 
certainty equivalence, risk aversion, independence, reduction of lotteries, continuity), 
the decision maker's preferences on dimension} can be represented by the criterion 
function gj- to be maximized. This function is defined on the set of lotteries as 
follows: 

(IS.23) 

where N is a negation defined on the unit interval (e.g. N(a.) = 1 - a.). 

Criterion function gj- reflects a rather pessimistic point of view since it can be 
interpreted as the extension of the Wald maximin criterion with possibilistic weights. 
An alternative view, more optimistic, can be adopted within the framework of 
qualitative decision theory under uncertainty, by substituting "risk aversion" by the 
"risk prone" axiom. In this case, decision maker's preferences can be represented by 
another criterion function gj +(1t) (to be maximized) defined as follows [39]: 

(1S.24) g/(1t) = max xexmin(1t(x), gix» 

Since by definition there exists at least one Xo E X such that 1t(xo) = 1, we have: 

minxe S(lt) {gix)} = gj-(1t) :;; g/(1t) = maxxe S(lt) {gix)} 

where S(1t) = {x EX: 1t(x) > o}. Therefore, gj-(1t) and g/(1t) are compromise 
operators that can be understood as natural counterparts of expected value expressed 
in the max-min algebra. Interpreting gix) as the degree to which consequence x 
satisfies the}th objective of the decision maker, g/(1t) (resp. gj-(1t» measures the 
possibility (resp. the certainty) that the outcome of 1t is good on dimension j. 
Intervals of type [gj-(1t), gj +(1t)] provide a compact representation of lotteries that 
allow an interval order structure to be defined as follows: 

¢:::> gj-(1t) > g/ (1t') 
¢:::> [gj +(1t), gj-(1t)] n [gj-(1t'), gj +(1t')] :;:. 0 
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Sharper preference structures are given by complete preorders of type K = Y u I or 
R+ = p+ u I where Y, p+ and I are defined as follows: 

(15.25) 1t P/ 1t' ~ [gj-(1t) > gj-(1t') or (gj-(1t) = gj-(1t') and gj +(1t) > gj +(1t'))] 
(15.26) 1t Pj + 1t' ~ [gj +(1t) > gj \1t') or (gj +(1t) = gj +(1t') and gj-(1t) > gj-(1t'))] 
(15.27) 1t ~ 1t' ~ [gj-(1t) = gj-(1t') and g/(1t) = g/(1t')] 

As pointed out by [105], this approach may also be used to generalize the 
construction of preference relations from criterion values when alternatives are 
represented by possibilistic lotteries. Suppose for instance that a preference relation 
Pj has been defined from gj using a function.,6 as in equation (15.1). From relation Pj 

we can derive two relations Pi and Pj + extending Pj for the comparison of lotteries: 

(15.28) 
(15.29) 

Pi(1t, 1t') = inf(x.Y)EXxXmax(1-1t(x), I-1t'(y),.,6(gix), gj(y))) 
Pj +(1t, 1t') = sup (x. Y)EXxXmin(1t(x), 1t'(y),.,6(gix), gj(y))) 

Example 15.1 Consider X= {XI, ... , xs} a set of consequence on dimension} such 
that gixl) > giX2) > giX3) > giX4) > gixs) and consider 3 alternatives (acts) 
represented by 3 lotteries 1t, 1t' and 1t" such that 1t(X2) = 1t"(X4)' 1t(xs) = 1t"(XI) and ° < 
1t(xs) < 1t(Xl) (see fi ure 15.8 . 

r-~----~~---------------------------' 

7t 7t' 7t" 

Figure 15.8: Comparison oflotteries 1t, 1t' and 1t" 

In this case, the possible states of the world are all the possible triplets of 
outcomes for 1t, 1t', 1t". Thus we get the following four states: SI = (xs, X3, X4), S2 = (xs, 
X3, XI), S3 = (Xl, X3, X4), S4 = (Xl, X3, XI) and the following "multicriteria decision table" 
(see table 15 3)' 

SI S2 S3 S4 

1t Xs Xs Xl X2 
rr: X3 X3 X3 X3 
1t" X4 XI X4 Xl 

Table 15.3: Outcomes of alternatives 1t, 1t' and 1t" 

Consistently with the definition of possibility distributions we set 1t(Xl) = 1t"(X4) = 

1 and 1t(xs) = 1t"(XI) = a E (0, I). Hence S3 is the more plausible state and SJ, Sl, S4 

have equal possibilities. Suppose that the preference relation Pj is defined on Xby: 

{
I if gj(x»gj(Y) 

f·(x,y)= } ° otherwise 

We get XIPj Xl Pj X3 Pj X4 Pj Xs. The associated relations Pi and Pj + obtained by 
equations (15.28)-(15.29) are depicted on figure 15.9. 
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Notice that it is easy to derive transitive preference relations from these valued 
graphs (e.g. 1t p/1t' ¢::> (p/(1t, 1t') > p/(1t', 1t»). This would not be the case with a 
probabilistic representation of uncertainty. Suppose for instance that the same 
problem has been represented with 3 probabilistic lotteries p, p' and p" instead of 1t, 

1t' and 1t". In order to represent the relative likelihood of consequences we have to set 
P(X2) = P"(X4) = ~, p(xs) = p"(xd = I - ~ and 0.5 < ~ < 1. Hence S3 is the more 
probable state and the probability of the preference of type p Pj p' is given by: 

Pj(p,p') = L p(x) p'(y) !j(x,y) 
(x.y)eXxX 

This leads to the preference graph depicted on the right of figure 15.9. 
Unfortunately this graph does not provide a clear information since the preference 

relation defined by: p PjP' ¢::> (p/(p,p) > p/(p',p))) is cyclic for ~E [112, 11.[2]. 

I-a 

.~\. ;: 
~. n" 

Figure 15.9: Possibility, necessity and probability of preference 

Thus we observed that an additive (probabilistic) representation of uncertainty 
does not allow to export the transitivity from preferences on crisp consequences to 
preferences on lotteries. This example highlights a typical advantage of possibility 
theory for handling uncertainty in multicriteria decision support systems. For a 
deeper analysis of such problems the interested reader should consult [34, 42]. 

Suppose now that criterion values gj(x) and possibilities 1t(x), 1t'(x) and 1t"(x) are 
known for all x in X and expressed on the same scale [0, 1]. For example, 1t(X2) = 

1t"(X4) = 1t'(X3) = I, 1t(xs) = 1t"(Xt) = 0.6, giXt) = 0.9, giX2) = 0.7, gj(X3) = 0.5, giX4) = 

0.3, gixs) = 0.1. Using equations (15.23, 15.24) we obtain the following criterion 
values: gj'(1t) = 0.4, g/(1t) = 0.7, g;(1t') = 0.5, g/(1t') = 0.5, g;(1t") = 0.3, g/(1t") = 

0.6. Hence by equations (15.25)-(15.27) we get: 1t P+1t" P+1t' and 1t' P'1t P'1t". 
Notice that, in both orderings, 1t is preferred to 1t" but the position of 1t' remains 

unclear. It depends on the attitude of the decision maker towards risk. Notice also 
that comparing lotteries through their "expected" utilities always leads to transitive 
preferences. This is the main interest of making comparable the uncertainty scale 
and the preference scale. -

The various concepts developed in this section illustrate either qualitative or 
quantitative approaches developed in the artificial intelligence community and show 
their potential interest for knowledge representation and reasoning in MCDM. Some 
other important contributions of AI to decision analysis concern the learning of 
preference models and decision rules. These aspects are partly evoked in the section 
devoted to the neural approach but other models based either on rough sets or 
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evolutionary algorithms could be considered as well (see Chapters 14 and 16 of this 
book). 

15.3 Heuristic search and interactivity 

15.3.1 Introduction 

Perhaps the most striking impact of AI on decision aid, generally speaking, or more 
specially, in MCDM is the spreading of heuristic search methods. At the beginning is 
the idea put forward in [91] that human problem solving results into an exploration 
among a state space, each state containing some information about the solution. This 
exploration obeys the very simple rules of heuristic search [91]. Heuristic search is a 
systematic trial and error process controlled by the evaluation of each state. This 
evaluation is generally carried out by an evaluation function which formalizes the 
heuristic knowledge about the search. However, in many cases it is difficult to 
formalize this heuristic knowledge and the evaluation of each state is very contextual 
and idiosyncratic. This is the reason why decision making requests human 
intervention [110,83]. 

In a heuristic search the purpose is to find a sequence of well-defined operators 
leading from the initial state to the target one (Figure 15.10). In any attained current 
state the explorer has to decide, according to his evaluation, whether: 

- he chooses one of its son states as the new current state (advance) 
- he still continues to develop new sons (continue) 
- he backtracks to an already developed and recorded state. 

Initial state 

Development o[So 

o 
Target state 

Figure 15.10: Heuristic search 

This three-forked decision is the basis for any interactive decision process (see 
Section 15.3.4). However, this general framework is now appropriated by many 
researchers in optimization and decision aid. Thus, we will restrict ourselves to 
applications to MCDM. Among these applications the most direct consists of 
applying heuristic search process to choose among the alternatives into the set of all 
available alternatives (choice set). 
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15.3.2 Heuristic search in the choice set 

The set of all the alternatives is considered as a state space. Thus, after defining the 
operators, the decision maker can perform a heuristic search in this space. This idea 
was exploited in PRIAM [78, 79]. A resulting software, named MULTIDECISION, 
was developed involving PRIAM algorithm (see [113], ch.9). In PRIAM, each state 
essentially contains the "satisfaction levels" attained by the decision maker at this 
step of the search. By "satisfaction level" we mean a vector valued on each attribute 
which is not necessarily an alternative, this vector indicates the level of satisfaction 
that the decision maker would like to get for each criterion. The system also 
indicates the number of possible alternatives still above the satisfaction level. This is 
the reason why the method is somewhat reminiscent of elimination by aspects [145, 
146]. At the view of the alternative proposed by the system, the decision maker 
evaluates whether he is satisfied or how promising is the continuation of the 
exploration (see figure 15.11, below). Relying on this evaluation the decision maker 
triggers or not an operator to get new alternatives proposed by the system. He can 
also decide to backtrack to an already met alternative. The whole process is very 
similar to the A * algorithm [93]. 

The quality of the exploration performed by the decision maker depends on his 
shrewdness to understand that he cannot increase all the criteria together. In other 
words, when he gains on some criteria he has to diminish his wishes on some others. 
This is a kind of learning process about trade-offs However, the software must 
provide good operators that help the decision maker to make a wise exploration and, 
more important, to reach efficient points (Pareto boundary). In fact, this kind of 
exploration is inherently interactive and heuristic because, at each step, the decision 
maker is faced to an alternative proposed by the software. This raises two questions: 
Does the process leads to an efficient point and has the decision maker sufficient 
information to control his exploration and to evaluate each state attained by the 
system? To answer the first question, the idea in PRIAM was to provide the decision 
maker with an efficient point, dominating the current point, by prolonging the 
preceding move up to the Pareto boundary. 

To answer the second question about the evaluation of the current state, various 
ideas can be put forward. The system can display some alternatives in the 
"neighborhood" of the current point to show to the decision maker some other 
possibilities. It is also possible to give an aggregated real value of each alternative 
displayed by the system. This is a kind of scoring system. In MULTIDECISION, 
some of the alternatives already met by the decision maker and considered as 
"satisficing" ones are displayed, so that the decision maker can easily backtrack and 
explore different trade-offs. With this facility and the possibility to know the distance 
to the Pareto boundary, and thus to get efficient points, the exploration with 
MULTIDECISION is very interactive and attractive. Consequently, the idea has 
been exploited again in some other packages [44, 45]. The same idea of interactive 
search is also used in AIM [86, 87] at one of the steps of the method. PRIAM was 
also adapted to continuous multiobjective programming [116]. 
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15.3.3 The moving base heuristic 

The moving base heuristic (MBH) is an interactive choice procedure proposed in [4, 
5, 6] for multicriteria decision problems. As introduced in [6], this heuristic can be 
seen as a sophistication of the elimination by aspects heuristic (EBA) [145, 146] 
since it is based on an iterative algorithm consisting of progressive refinement of the 
initial set of alternatives. MBH relies on the following assumptions: 

• the process cannot be reduced to elimination and may include selection steps 
• at each level of the selection/elimination process the decision maker can consider 

several attributes at the same time and even several coalitions of attributes 
• the decision maker only reacts to differences of a given amplitude (this implies 

discrimination thresholds) 

Basically, MBH heuristic can be used to compare two alternatives. In this case, the 
procedure proposed in [4] consists of the following steps: 

1. consider a set ot attributes and thresholds on these attributes 
2. compare two alternatives with respect to these attributes 
3. if the observed differences are greater than the fixed thresholds 

then chose the dominating alternative 
else if there exists other relevant sets of attributes 

then select a set of attributes and thresholds and go to step 2 
else make no decision 

Any session of this procedure can be summarized by a polynomial MI + ... + M k• 

where ~ characterizes a set of relevant attributes at steps j with the associated 
thresholds. For example, consider a problem with 5 integer-valued criteria {gi. g2, 
g3, g4,gS} with thresholds values 2, 1,5,3, 1. In such a case, 

x~ xl means a P b <=> (gl(a)-gl(b» > 2 /\ (g4(a)-g4(b» > 3 

xixjxs means a P b <=> (g2(a)-g2(b» > 1 /\ (g3(a)-g3(b» > 5 /\ (gs(a)-gs(b» > 1 

Suppose that the first monomial X l
2 xl corresponding to the base {gi. g4} does not 

enable to discriminate between a and b at the first stage of the MEH. Then, the 
second monomial corresponding to the base {g2, g3, gs} is used at the second stage, 
leading to the decision a is preferred to h. This is a combination of lexicographic 
orders and semi-orders with thresholds. A compact representation of this entire 

session is given by the polynomial: P = x~ xl + xixj xJ. 

Thus, the MBH can be used to compare each pair of alternatives. Since there is 
little chance for a single polynomial to be compatible with all sessions used to 
compare all pair of alternatives, the resulting strict preference relation is not 
necessarily transitive. The interested reader should consult [4] to find a necessary 
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and sufficient condition for a compatible choice polynomial to exist, and a procedure 
to identify minimal choice bases. 

In order to understand to what extend the MBH is an extension of the EBA, 
assume that a. is a given satisfaction level. Then, MBH can be used to compare each 
feasible alternative to a •. Thus, a MBH polynomial acts as a sequence of elimination 
by groups of aspects. 

15.3.4 Interactivity 

The overall framework for interactivity in MCDM is drawn in [126] who 
distinguishes between elicitation of the decision maker's preferences and progressive 
articulation of the preferences. We think that in the context of MCDM analysis, the 
second situation is prevalent. This is the reason why we consider interactive methods 
as progressive articulation methods intended to obtain more and more knowledge 
from the decision maker in order to jointly build the decision maker's preferences. 
By joint construction we mean that the decision maker and the system cooperate to 
the progressive elicitation of the preferences. 

Although progressive elicitation methods in MCDM go back to the very 
beginning (e.g. [123, 11, 124]), and were independently developed from AI, one 
must stress the numerous similarities between progressive articulation method in 
MCDMandAI. 

Actually, progressive articulation methods in MCDM always rely on the same 
process : the system displays to the decision maker an alternative (current 
alternative) and then according to the decision maker's reaction try to find another 
"better" alternative. This process is nothing else than a heuristic search in which the 
exploration is interpreted as a learning procedure. This procedure is twofold: the 
decision maker becomes progressively conscious of his own preferences and trade
offs and the system learns the preferences of the decision maker. The principles of 
progressive articulation methods are displayed on Figure 15.11, see also [149,150] 
for a comprehensive view about interactive methods in a pure multicriteria 
framework. Among heuristic search methods, [53] distinguishes between so-called 
search-oriented and learning-oriented, depending on the role of the decision maker. 
The two concepts refer to heuristic search as presented here, but in a "search
oriented" process, the decision maker is supposed to have a given preference 
structure to unveil, whereas in "learning oriented" procedures, the decision maker 
elicits his preferences via the interaction. We do not adopt this distinction because 
we believe that: 1) the first case does not really exist in multicriteria decision making 
(i.e. the decision maker never has a given, a priori, preference structure in mind); 2) 
the observer has no means to distinguish between search and learning oriented 
behaviors. 

On Figure 15.11, the current state is generally an alternative or a satisfaction level 
which is displayed to the decision maker by the system. Once the reaction of the 
decision maker is known the system determines another alternatives (which 
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becomes) the new current state. The words "continue", "advance" and "backtrack" 
refer to heuristic search (Section IS.3.2). When the information provided by the 
decision maker is not a feasible satisfaction level, for instance, an ideal point, the 
system generally calculates the alternative( s) that is (are) the closest of this 
satisfaction level by using a scalarizing function [lS9] or a provisional aggregation 
function [lSI]. One can find an overview of these methods in this book (Chapter 9). 

In some sense, the preceding interpretation of progressive articulation methods 
links research of a compromise in a MCDM setting and problem solving. While it is 
possible to study interactivity in MCDM without any reference to AI (see e.g. [ISO]), 
we think that heuristic methods offer a good framework to think about interactivity 
and man-system cooperation. First of all, heuristic search emphasizes the role of 
evaluation. This is exactly what the decision maker has to do when a new current 
alternative is displayed by the system. Secondly, an important point introduced by 
Simon's work is that this heuristic search leads to a "satisficing" issue. Whereas 
many works relative to interactive MCDM seek to find some kind of efficient 
alternative by using a real-valued aggregation function, it is clear that this is not the 
problem for decision makers who only need a satisficing compromise between more 
or less contradictory criteria. 

Thus, AI views eventually pave the way to more realistic and simpler procedures. 
See for example TRIPLE C [1] and AIM [86, 87] for interactive methods closer to 
AI than traditional interactive methods. This simplicity is often appreciated by 
decision makers [IS6, 9S]. 

Finally, we do not develop in this sub-section the problems raised by user
friendliness of the interfaces and man-machine communication in the framework of 
MCDM. However, a lot of ideas in these domain come from AI people. We refer to 
[113] for an introduction about visualization methods in MCDM. 

New current 
state 

Advance 
or backtrack 

continue 

__ --------------------~~------_. END 
The decision maker is satisfied 

Figure IS.l1 : Principle of progressive articulation methods 
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15.3.5 Multicriteria DSSs 

A presentation of multicriteria DSSs (MCDSSs) would be difficult without any 
reference to AI because many of the most recent MCDSSs involve knowledge-based 
systems and various representations issued from AI. However, we do not intend to 
address the problem of MCDSS design and development in its full generality, 
referring to [111] for a critical survey. We just want to point out some possibilities 
opened by AI technique for the development of MCDSSs. To structure our 
presentation, we will refer to Simon's analysis of the decision processes [133]. Thus 
we will distinguish the four, more or less recursive, decision phases: intelligence, 
design, choice and review. Of these four phases, there are no theoretical reasons 
explaining why MCDSS designers generally address only the third. However, there 
are probably practical and cultural reasons. We will not review here the issues 
related to choice because this is the main subject of multicriteria analysis and 
therefore of this book. Let us just survey the contributions of AI addressing the three 
other phases. 

Intelligence. "Intelligence" refers to the information process essential in any 
decision support system because, as Simon said, information constrains the decision. 
Information is related to the data base and the data base management system 
contained in any DSS. The functionalities related to the data base (recording, 
retrieval, structuration, etc.) are not specific to MCDSSs. Consequently we will not 
devote a special subsection to this theme but will refer to the general literature on 
DSSs or Executive Information System (EIS). However, let us add that we are not 
aware of a single MCDSS noticeable from this point of view. This is probably one 
weakness which unfortunately, as we will see, prevents designers from addressing 
the fourth phase (review). These questions have recently received a renewed 
attention in the framework of datarwarehousing, since datawarehousing generally 
point to multidimensional decision tools and multidimensional spread-sheets. 

Design. There are two specific targets for MCDSS designers: the alternatives and the 
criteria. Let us begin with the criteria. The first task consists of defining a family of 
criteria. As explained in [21] (see also [128, 113]) it is often difficult to decide what 
the criteria must be. For example, how to measure the damage caused to the 
inhabitants living near an airport. As far as we know, the process of specifying the 
criteria remains a human one, mainly relying on the discussion between people 
interested in the problem. 

The second question is that of the consistence of the family of criteria [128]. 
Although it seems possible to bring some support to the decision maker for this 
particular task, the notion is probably too recent to be already taken into account in 
MCDSSs. 

Once, everybody agrees about the family of criteria, assuming that the alternatives 
are known, it remains to complete the decision matrix, i.e. to evaluate each 
alternative according to the criteria. This evaluation theoretically depends on the 
posterior aggregation procedure, but this fact is generally ignored by the designers so 
that the assessment is generally independent on the aggregation. 
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Weare not aware of any significant AI application to the design of criteria which 
tackles the preceding problems. One can say the same thing about the weights, 
although there exist several packages bringing some support for weight evaluation 
(see [113], ch. 4). 

The second point concerns the design of the alternatives. This is a prominent 
point because many implicit assumptions relative to the alternatives are not realistic. 
The main implicit assumption is that the set of alternatives is well-defined and fixed 
(B. Roy, in [26]). This assumption, which is generally not satisfied, suffices in many 
cases to prevent decision makers from using multicriteria analysis. The second 
assumption being that the alternatives be mutually exclusive. For instance, it is not 
allowed to mix them to get a new synthetic alternative. 

We have already addressed the question of the alternative design in Section 
15.1.2. Knowledge based systems are generally necessary to expand simple 
alternatives into robust scenarios (or FEA, see Section 15.1.2) that can be evaluated. 
In our previous example of timetable robustness [115] an expert system was 
introduced to make some intermediary decisions. In a MCDSS for the choice among 
the many possible variants of a future privation law [81], expert systems were 
designed to simulate actors reactions (companies, unions, stockholders). Many 
multicriteria negotiation systems use AI methods to draw up the proposals of the 
negotiators (progressive building of the alternatives). Among these systems, let us 
mention those using rule representations: MEDIATOR [60], DECISION MAKER 
[51], and NEGO [68], see also [82] and [65] for surveys. A system relying on multi
agent technique has also been designed in [41]. 

In many MCDSSs, the user has to introduce the alternatives, but in some cases the 
system can help to generate them (see 15.1.2). Sometimes the system provides some 
help for assessing the feasibility of the alternatives and generating some new ones. 
For example, in [107] the alternatives are introduced via a spread-sheet which allows 
the user to test the feasibility and the quality of the alternatives he has in mind. 

More generally many MCDSSs tends to become multi-structural, in the sense that 
they are based on many types of models [81]. In many cases, theses multi-structural 
MCDSSs are in fact "intelligent" DSSs, this means that they involve knowledge
based modules [7, 13,23,33, 52, 75, 115, 136]. Without any doubt, the main effort 
to introduce MCDSSs in organizations concerns the design of folly expanded 
alternatives using the resources of various models and AI techniques within multi
structural MCDSSs. 

Review and learning. Whereas it is not clearly stated in [133], we think that one of 
the most important functions of "review" is learning and we believe that the main 
support that could be provided to organizations should especially concern "learning". 
In many cases, we have observed that the decision is thought as a one shot game 
whereas most decisions are more or less repetitive. Moreover, human memory has 
some known biases and, for that reason, cannot accurately analyse the decision ex
post. Thus, it is an illusion to think that one can reach any learning capabilities for 
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to introduce MCDSSs in organizations concerns the design of folly expanded 
alternatives using the resources of various models and AI techniques within multi
structural MCDSSs. 

Review and learning. Whereas it is not clearly stated in [133], we think that one of 
the most important functions of "review" is learning and we believe that the main 
support that could be provided to organizations should especially concern "learning". 
In many cases, we have observed that the decision is thought as a one shot game 
whereas most decisions are more or less repetitive. Moreover, human memory has 
some known biases and, for that reason, cannot accurately analyse the decision ex
post. Thus, it is an illusion to think that one can reach any learning capabilities for 
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complex decisions without the help of a computer and a DSS. Nevertheless, up to 
now, very little seems to have been done in this domain. 

There are many possibilities related to learning, review and ex-post analysis. 
First, in some senses, a decision maker can learn the effect of the values he has given 
to the weights. Similarly, in outranking methods, the decision maker learns to modify 
the concordance and discordance factors, [134] and [155]. 

In some interactive procedures based on aspiration levels, whose prototypes are 
given by DIDASS in continuous programming [55] and PRIAM in a discrete setting 
[79], the decision maker certainly learns to behave with conflicting goals and he 
gains a certain ability for trade-offs. The same idea is also present in certain graphic 
methods (e.g. TRIPLE C [1], or the Pareto Race [71]). 

The invitation to enlarge the heuristic search of the decision maker by showing 
alternatives not yet studied can also be regarded as a kind of learning, since this may 
lead to new compromises different from those which were envisaged. 
MULTIDECISION [113] and AIM [87] have such a feature. 

To learn about decision making, it is most important to record the exact 
conditions prevailing when a decision was made. The main items are: what were our 
ideas about the possible alternatives (why?), what was our evaluation of the 
alternatives and, what were our probabilities, our expectations, our perception of the 
environment? It is clear that the previous questions cannot be answered without an 
appropriate MCDSS which, together, supports the decision maker and records the 
data describing the context of a decision. Designing such a MCDSS is the price to 
pay for learning and making serious comparisons to discover possible flaws in the 
past decisions. This is also the only way to record reliable data to shed some light on 
future decisions. To our knowledge, some EISs have hardly attacked some of these 
questions but no MCDSS. This kind of learning still seems to be an empty field open 
to MCDSSs. 

15.4 Conclusions 

We have tried to provide a panorama of AI representations and tools used in 
MCDM. Many of these tools (rules, objects, non-classical logic, neural networks, 
fuzzy sets, rough sets, possibilities, etc) are now commonly used and the users no 
longer refer to AI. Similarly, whereas heuristics methods were for a long time absent 
from operational research culture and, consequently, from MCDM, they are now 
widely spread thanks to interactive systems. Hence, one can wonder what the future 
impact of AI on MCDM is? Right now, the most active interfaces between AI and 
MCDM seem to be case-based reasoning as regards symbolic representations and 
decision under uncertainty for numerical issues. This latter topic is potentially very 
important for MCDM because, up to now, very few MCDM models deal with the 
uncertainty about the alternatives. Although there is a formal analogy between 
multicriteria analysis and decision making under uncertainty (see Section 15.2.3), the 
subject has not been thoroughly studied. This is a prominent issue because, in most 
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real situations, alternatives and results are uncertain. Another weakness of MCDSSs 
is the oversimplification of the alternatives they are able to cope with [114]. In order 
to meet user requirements, we urgently need to design better MCDM tools 
supporting the decision maker in look-ahead and scenario management. This is the 
reason why new models of uncertainty promoted by AI researchers seem of a 
particular interest. 

Finally, we restrict ourselves to the exchange from AI to MCDM whereas it 
would be possible to follow the invert current. Up to now, AI researchers have 
largely ignored MCDM issues. However, in heuristic search, (Section 15.3.1) a 
multicriteria evaluation of the current state would be more informative than a scalar
valued function focusing on a single aspect. In fact, a scalar-valued evaluation 
function may be regarded as an aggregation function implicitly synthesizing multiple 
aspects. It would be wise to make the aggregation process explicit by introducing a 
vector valued evaluation function (see [85, 136] and [158], for first steps in this 
direction). 

Other AI fields could also take advantage of MCDM. On the one hand, in 
planning, AI systems generally stumble on task partial orderings. Therefore, various 
way of generating a total ranking from these partial orderings should be worth 
studying. On the other hand, autonomous agents in distributed AI often make 
decision by means of very simple one-dimensional decision functions. Using MCDM 
procedures would produce more sophisticated behaviors. 

In less than twenty years, AI and decision making (particularly MCDM) have 
woven many relationships. These links are rather asymmetric, because whereas 
MCDM has borrowed many ideas and tools issued from AI, relatively few exchanges 
followed the opposite direction. MCDM people still have to continue their work to 
popularize their domain ... 
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Abstract: This chapter describes two stochastic search and optimization tech
niques, evolutionary algorithms and simulated annealing, both inspired by mod
els of natural processes (evolution and thermodynamics) and considers their role 
and application in multiple criteria decision making and analysis. The basic 
single criteria algorithms are first presented in each case and it is then demon
strated with an example problem how these may be modified and set up to deal 
with multiple design criteria. Whilst the example employed considers the design 
of a robust control system for a high speed maglev vehicle, the approaches and 
techniques have a far wider range of application. 

16.1 INTRODUCTION 

Real-world problems will usually involve the satisfaction of multiple perfor
mance measures, or objectives, which should be solved simultaneously. In 
some situations, the objective functions may be solved in isolation from one 
another and an insight concerning the best that may be obtained in each per
formance domain obtained. However, when considering the overall problem, 
suitable solutions will seldom be found in this way. An optimal performance 
in one objective domain will often imply an unacceptably low performance in 
one or more of the remaining objectives necessitating the need for some sort of 
compromise solution to be reached. Suitable solutions to problems posing such 
conflicts should offer an "acceptable", though possibly sub-optimal in a single 
objective sense, performance across all the objectives. In this case "acceptable" 
is then a problem-dependent and subjective notion. 

The simultaneous solution of multiple, possibly competing, objective func
tions is unlikely to yield a single utopian solution. Instead, the solution of a 
multiobjective optimization (MO) problem is a set of Pareto-optimal solutions 
which in most practical situations is likely to be very large. Subsequently there 
is a difficulty in representing the set of Pareto-optimal solutions and in choos
ing a suitable solution from this set when there is no information regarding 
the relative performance of each objective. The size of the solution set can, 
however, be reduced by including a set of objective function goals which must 
also be satisfied. 

Various non-linear programming methods have been developed to solve the 
MO problem (see, for example, [3]). However, this is not a trivial task as practi
cal problems are generally non-convex, multimodal and frequently non-smooth 
or exhibit discontinuities. These traditional approaches use deterministic tran
sition rules, generally to implement a form of hill climbing, and as such can only 
be expected to work well if the problem is small and has few local minima, i.e. 
distinct regions in decision variable space that yield Pareto-optimal solutions. 
Additionally, they will require a good estimate of the solution if they are not to 
converge to some local, sub-optimal solution. For larger, more realistic prob-
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lems or ones that may have many local minima, algorithms with probabilistic 
transition rules offer greater potential for success. 

This chapter introduces two such approaches, evolutionary algorithms and 
simulated annealing. After an introduction to the basic components of an evo
lutionary algorithm, the notion of a decision maker is presented and used as 
the basis for constructing a multiobjective genetic algorithm (MOGA). An ex
ample from robust control system design, the electro-magnetic suspension of a 
high speed maglev vehicle, is then used to illustrate the approach. An alter
native stochastic approach to solving multiple criteria optimization problems, 
simulated annealing, is then described and demonstrated on a similar controller 
design problem. 

16.2 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are based on computational models of fundamental 
evolutionary processes such as selection, reproduction and mutation, as shown 
in Fig. 16.1. Individuals, or current approximations, are encoded as strings 
composed over some alphabet(s), e.g. binary, integer, real-valued etc., and an 
initial population of chromosomes, Chrom in Fig. 16.1, is produced by randomly 
sampling these strings. Once a population has been produced it may be evalu
ated using an objective function or functions that characterize an individual's 
performance in the problem domain. Where the encoding of chromosomes uses 
a mapping from the decision variables to some other alphabet, e.g. real-values 
encoded as binary strings, it will be necessary to decode the chromosomes before 
the objective function may be evaluated and a cost vector, Cost, assigned to 
the population. The objective function(s) is also used as the basis for selection 
and determines how well an individual performs in its environment. A fitness 
value is then derived from the raw performance measure given by the objective 
function(s) and is used to bias the selection process towards promising areas 
of the search space. Highly fit individuals will be assigned a higher probability 
of being selected for reproduction than individuals with a lower fitness value. 
Therefore, the average performance of individuals can be expected to increase 
as the fitter individuals are more likely to be selected for reproduction and the 
lower fitness individuals get discarded. Note that individuals may be selected 
more than once at any generation (iteration) of the EA and that the temporary 
vector of selected individuals, Sel, may therefore contain more than one copy 
of any individual in the original population. 

Selected individuals are then reproduced, usually in pairs, through the ap
plication of genetic operators and these new individuals may then overwrite 
their parents in the vector Sel. These operators are applied to pairs of individ
uals with a given probability and result in new offspring that contain material 
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exchanged from their parents. The offspring from reproduction are then fur
ther perturbed by mutation. These new individuals then make up the next 
generation, Chromo These processes of selection, reproduction and evaluation 
are then repeated until some termination criteria are satisfied, e.g. a certain 
number of generations, Gen, completed, a mean deviation in the performance 
of individuals in the population or when a particular point in the search space 
is reached. 

procedure EA { 
initialize(Chrom); 
while not finished do { 

} 
} 

Cost = objv_fun(decode(Chrom»; 
Sel = select(Chrom, Cost); 
Sel = reproduce(Sel); 
Chrom = mutate(Sel); 
Gen = Gen + 1; 

Figure 16.1 An evolutionary algorithm. 

Although similar at the highest level, many variations exist in EAs. A 
comprehensive discussion of the differences between the various EAs can be 
found in [22]. 

16.3 MUlTIOBJECTIVE OPTIMIZATION AND DECISION MAKING 

The use of multiobjective optimization (MO) recognizes that most practical 
problems require a number of design criteria to be satisfied simultaneously, viz: 

(16.1) minF(p) 
pEn 

where p = (PI, P2, ... ,pq] and n define the set of free variables, p, subject to 
any constraints and F(p) = [11 (p), h (p), ... , In (p)] are the design objectives 
to be minimized. 

Clearly, for this set of functions, F(p), it can be seen that there is no one 
ideal 'optimal' solution, rather a set of Pareto-optimal solutions for which an 
improvement in one of the design objectives will lead to a degradation in one or 
more of the remaining objectives. Such solutions are also known as non-inferior 
or non-dominated solutions to the multiobjective optimization problem. 
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is reached. 

procedure EA { 
initialize(Chrom); 
while not finished do { 

} 
} 

Cost = objv_fun(decode(Chrom»; 
Sel = select(Chrom, Cost); 
Sel = reproduce(Sel); 
Chrom = mutate(Sel); 
Gen = Gen + 1; 

Figure 16.1 An evolutionary algorithm. 

Although similar at the highest level, many variations exist in EAs. A 
comprehensive discussion of the differences between the various EAs can be 
found in [22]. 

16.3 MUlTIOBJECTIVE OPTIMIZATION AND DECISION MAKING 

The use of multiobjective optimization (MO) recognizes that most practical 
problems require a number of design criteria to be satisfied simultaneously, viz: 

(16.1) minF(p) 
pEn 

where p = (PI, P2, ... ,pq] and n define the set of free variables, p, subject to 
any constraints and F(p) = [11 (p), h (p), ... , In (p)] are the design objectives 
to be minimized. 

Clearly, for this set of functions, F(p), it can be seen that there is no one 
ideal 'optimal' solution, rather a set of Pareto-optimal solutions for which an 
improvement in one of the design objectives will lead to a degradation in one or 
more of the remaining objectives. Such solutions are also known as non-inferior 
or non-dominated solutions to the multiobjective optimization problem. 
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Generally, members ofthe Pareto-optimal solution set are sought through so
lution of an appropriately formulated nonlinear programming problem. A num
ber of approaches are currently employed including the (-constraint, weighted 
sum and goal attainment methods [12]. However, such approaches require pre
cise expression of a, usually not well understood, set of weights and goals. If 
the trade-oft' surface between the design objectives is to be better understood, 
repeated application of such methods will be necessary. In addition, nonlin
ear programming methods cannot handle multimodality and discontinuities in 
function space well and can thus only be expected to produce local solutions. 

Evolutionary algorithms, on the other hand, do not require derivative in
formation or a formal initial estimate of the solution region. Because of the 
stochastic nature of the search mechanism, genetic algorithms (GAs) are ca
pable of searching the entire solution space with more likelihood of finding 
the global optimum than conventional optimization methods. Indeed, con
ventional methods usually require the objective function to be well behaved, 
whereas the generational nature of GAs can tolerate noisy, discontinuous and 
time-varying function evaluations [7]. Moreover, EAs allow the use of mixed 
decision variables (binary, n-ary and real-values) permitting a parameterization 
that matches the nature of the design problem more closely. Single objective 
GAs, however, do still require some combination of the design objectives al
though the relative importance of individual objectives may be changed during 
the course of the search process. 
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A general view of multiobjective evolutionary optimization has been pro
posed by Fonseca and Fleming [6] and is illustrated in Fig. 16.2. The decision 
maker block represents a utility assignment strategy, which may be anything 
from a straight-forward weighted sum approach to an intelligent decision maker 
or human operator. The EA is employed to generate a set of candidate solu-
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tions according to the utility level assigned by the decision maker to the current 
set of solution estimates. The decision maker thus influences the production of 
new solution estimates and as these are evaluated they provide new trade-off 
information which can be used by the decision maker to refine its current goals 
and preferences. The effect of any changes in the decision process, perhaps 
arising from taking recently acquired information into account, is seen by the 
EA as a change in environment. In the next section, a multiobjective deci
sion making process, based on a Pareto-ranking approach, is described and a 
multiobjective evolutionary algorithm developed. 

16.4 MULTIOBJECTIVE GENETIC ALGORITHMS 

The notion of fitness of an individual solution estimate and the associated ob
jective function value are closely related in the single objective GA described 
earlier. Indeed, the objective value is often reffered to as fitness although they 
are not, in fact, the same. The objective function characterizes the problem do
main and cannot therefore be changed at will. Fitness, however, is an assigned 
measure of an individual's ability to reproduce and, as such, may be treated as 
an integral part of the G A search strategy. 

As Fonseca and Fleming describe [6], this distinction becomes important 
when performance is measured as a vector of objective function values as the 
fitness must necessarily remain scalar. In such cases, the scalarization of the 
objective vector may be treated as a multicriterion decision making process 
over a finite number of candidates - the individuals in a population at a given 
generation. Individuals are therefore assigned a measure of utility depending 
on whether they perform better, worse or similar to others in the population 
and, possibly, by how much. The remainder of this section describes the main 
differences between the simple EA outlined earlier and MOGAs. 

16.4.1 Decision Strategies 

In the absence of any information regarding the relative importance of design 
objectives, Pareto-dominance is the only method of determining the relative 
performance of solution estimates. Non-dominated individuals are all therefore 
considered to be 'best' performers and are thus assigned the same fitness [7], e.g. 
zero. However, determining a fitness value for dominated individuals is a more 
subjective matter. The approach adopted here is to assign a cost proportional 
to how many individuals in a population dominate a given individual, Fig. 16.3. 
In this case, non-dominated individuals are all treated as desirable. 

If goal and/or priority information is available for the design objectives then 
it may be possible to differentiate between some non-dominated solutions. For 
example, if degradations in individual objectives still allow those goals to be 
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satisfied whilst also allowing improvements in other objectives that do not 
already satisfy their design goals, then these degradations should be accepted. 
In cases where different levels of priority may be assigned to the objectives 
then, in general, it is only important to improve the high priority objectives, 
such as hard constraints, until the corresponding design goals are met, after 
which improvements may be sought in the lower priority objectives. 

'" ~ .. + 0 

I .. ~ 5 

Objective 1 

Figure 16.3 Pareto ranking 

These considerations have been formalized in terms of a transitive relational 
operator, preferability, based on Pareto-dominance, which selectively excludes 
objectives according to their priority and whether or not the corresponding 
goals are met [5]. For simplicity only one level of priority is considered here. 
Consider two objective vectors u and y and the corresponding set of design 
goals, g. Let the smile, ~ denote the components of u that meet their goals 
and the frown ~ those that do not. Assuming minimization, one may then 
write 

u u u u 

(16.2) u~ ~ g~ 1\ u~ > g~, 
where the inequalities apply component wise. This is equivalent to 

(16.3) Vi E ~, Ui ~ gi 1\ Vi E ~, Ui > gi, 

where Ui and gi represent the components of u and g, respectively. Then, u is 
said to be preferable to y given g if and only if 

(16.4) (u:!. P< y:!') V {(u:!. = y:!') 1\ [(y~ 1:. g~) V (u~ P< y~)]), 
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where p< is a dominance operator such that u p< v denotes that u dominates 
v, i.e. 

(16.5) Vi E {I, ... , n} ,Ui :::; Vi 1\ 3i E {I, ... , n} : Ui < Vi. 

Hence u will be preferable to v if and only if one of the following is true: 

1. The violating components of u dominate the corresponding components 
ofv. 

2. The violating components of u are the same as the corresponding com
ponents in v, but v violates at least one other goal. 

3. The violating components of u are equal to the corresponding components 
of v, but u dominates vasa whole. 

16.4.2 Fitness Mapping and Selection 

After a cost has been assigned to each individual, selection can take place in 
the usual way. Suitable schemes include rank-based cost to fitness mapping 
[1] followed by stochastic universal sampling [2] or tournament selection, also 
based on cost, as described by Ritzel et al. [18]. 
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Figure 16.4 Rank-based fitness assignment 

Exponential rank-based fitness assignment is illustrated in Fig. 16.4. Here, 
individuals are sorted by their cost - in this case the values from Fig. 16.3 -
and assigned fitness values according to an exponential rule (determined by 
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the particular ranking method employed) in the first instance, shown by the 
narrow bars in Fig. 16.4. A single fitness value is then derived for each group 
of individuals sharing the same cost, through averaging, and is shown in the 
figure by the wider bars. 

16.4.3 Fitness Sharing 

Even though all preferred individuals in the population are assigned the same 
level fitness, the number of offspring that they will produce, which must obvi
ously be integer, may differ due to stochastic nature of EAs. Over generations, 
these imbalances may accumulate resulting in the population focusing on an 
arbitrary area of the trade-off surface, known as genetic drift [9]. Additionally, 
recombination and mutation may be less likely to produce individuals at certain 
areas of the trade-off surface, e.g. the extremes, giving only a partial coverage 
of the trade-off surface. 

Originally introduced as an approach to sampling multiple fitness peaks, 
fitness sharing [8] helps counteract the effects of genetic drift by penalizing in
dividuals according to the number of other individuals in their neighbourhood. 
Each individual is assigned a niche count, initially set to zero, which is incre
mented by a certain amount for every individual in the population, including 
itself. A sharing function determines the contribution of other individuals to 
the niche count as a function of their mutual distance in genotypic, phenotypic 
or objective space. Raw fitness values are then weighted by the inverse of the 
niche count and normalized by the sum of the weights prior to selection. The 
total fitness in the population is re-distributed, and thus shared, by the pop
ulation. However, a problem with the use of fitness sharing is the difficulty in 
determining the niche size, O"share, i.e. how close together individuals may be 
before degradation occurs. 

An alternative, but analogous, approach to niche count computations are 
kernel density estimation methods [19] as used by statisticians. Instead of a 
niche size, a smoothing parameter, h, whose value is also ultimately subjective, 
is used. However, guidelines for the selection of suitable values for h have been 
developed for certain kernels, such as the standard normal probability density 
function and Epanechnikov kernels. The Epanechnikov kernel may be written 
as [19] 

(16.6) 
if d/h < 1 

otherwise 

where n is the number of decision variables, Cn is the volume of the unit n
dimensional sphere and d/ h is the normalized Euclidean distance between indi
viduals. Apart from the constant factor, ~c;:;-1(n+2), this kernel is a particular 
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case of the family of power law sharing functions proposed by Goldberg and 
Richardson [8]. 

Silverman [19] gives a smoothing factor that is approximately optimal in 
the least mean integrated squared error sense when the population follows a 
multivariate normal distribution for the Epanechnikov kernel Ke(d) as 

(16.7) 

for a population with N individuals and identity covariance matrix. Where 
populations have an arbitrary sample covariance matrix, 5, this may simply 
be 'sphered', or normalized, by multiplying each individual by a matrix R such 
that RRT = 5-1 . This means that the niche size, which depends on 5 and h, 
may be automatically and constantly updated, regardless of the cost function, 
to suit the population at each generation and used directly to perform sharing 
in Euclidean decision variable spaces. 

16.4.4 Mating Restriction 

Mating restrictions are employed to bias the way in which individuals are paired 
for reproduction [4]. Recombining arbitrary individuals from along the trade-off 
surface may lead to the production of a large number of unfit offspring, called 
lethals, that could adversely affect the performance of the search. To alleviate 
this potential problem, mating can be restricted, where feasible, to individuals 
form within a given distance of each other, O"mate. A common practise is to set 
O"mate = O"share so that individuals are allowed to mate with one another only 
if they lie within a distance h from each other in the 'sphered' space used for 
sharing [6]. 

16.4.5 Progressive Preference Articulation 

As the population of the MOGA evolves, trade-off information will be acquired. 
In response to the optimization so far, the operator may wish to investigate a 
smaller region of the search space or even move on to a totally new region. This 
can be achieved by resetting the goals supplied to the MOGA which, in turn, 
affects the ranking of the population and modifies the fitness landscape con
centrating the population on a different area of the search space. The priority 
of design objectives may also be changed interactively using this scheme. 

The introduction of a small number of random individuals at each generation, 
say 10-20%, has been shown to make the EA more responsive to sudden changes 
in the fitness landscape as occurs when the optimization is changed interactively 
[11]. This technique may also be employed by a MOGA and is used in the 
example presented in the next section. 
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16.4.6 Algorithm Description 

A pseudo-code outline of the multiobjective genetic algorithm is shown in 
Fig. 16.5. The population is initialized and the chromosomes are decoded, 
if necessary, and then evaluated according to the multiple objective functions. 
Preference-based ranking, pref ...rank in Fig. 16.5, assigns a non-unique cost 
to each individual dependent on its dominance in the population such that all 
non-dominated individuals are ranked zero, as described in section 16.4.1. As 
well as the vector of performance goals, Goal V an additional vector of objec
tive priority levels, PriV may also be specified although this is not used in the 
example here. 

The niche counts, Share, are calculated using a kernel estimator based on the 
Epanechnikov kernel. The decoded decision variables, DVar are passed to the 
function twice as they are both the sample data and the points where the pop
ulation density should be estimated. The default smoothing parameter Sigma 
(h) and a matrix R, such that DVar * R has identity covariance matrix, are 
also returned by the estimation function for use later during mating restriction. 

The function ranking uses Share to perform fitness sharing between individ
uals of equal cost as part of the fitness assignment procedure. Individuals can 
now be selected for reproduction, in this case by stochastic universal sampling, 
and allowance should be made at this point if random chromosomes are to be 
inserted into the population after mutation so that only the required number of 
individuals are selected. Mating restriction is implemented by reordering the 
selected individuals in Sel so that consecutive pairs correspond to individuals 
within the required distance Sigma of one another within normalized decision 
variable space wherever possible (restrict in Fig. 16.5). 

Recombination of individuals may now proceed as normal and the resulting 
population mutated. If random chromosomes are to be appended to the pop
ulation then this should occur after mutation so that they will have to survive 
selection before they can reproduce with the main population. This is most 
likely to occur when the fitness landscape changes, as a result of changes in 
Goal V or Pri V, and the population is no longer well adapted to it. 

16.5 EMS CONTROL SYSTEM DESIGN EXAMPLE 

In this section we present the example we will use to demonstrate the appli
cation of the multiobjective evolutionary and simulated annealing algorithms. 
The problem considered is the design of a control system for high-speed mag
netically levitated (maglev) vehicle and was chosen as it is sufficiently complex 
as to be realistic yet un-amenable to efficient direct solution using conventional 
techniques. The remainder of this section describes the controller design pro
cedure, the system under consideration and the design objectives. However, as 
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The problem considered is the design of a control system for high-speed mag
netically levitated (maglev) vehicle and was chosen as it is sufficiently complex 
as to be realistic yet un-amenable to efficient direct solution using conventional 
techniques. The remainder of this section describes the controller design pro
cedure, the system under consideration and the design objectives. However, as 
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procedure MOGA { 
initialize(Chrom)j 

} 

while not finished do { 
DVar = decode(Chrom)j 

} 

ObjV = multi_obj_fun(DVar)j 
Cost = pref_rank(ObjV, GoalV)j 
[Share, Sigma, R] = epanechnikov(DVar, DVar)j 
Fitn = ranking(Cost, Share)j 
Sel = select (Chrom , Fitn)j 
Sel = reproduce(restrict(decode(Sel)*R, Sigma»j 
Chrom = mutate(Sel)j 

Figure 16.5 A multiobjective genetic algorithm. 

many readers will be unfamiliar with the intricacies of control system design, 
the characteristics of the design objectives and parameters will be described in 
less formal terms in sections 16.6 and 16.8 and the remainder of this section 
may be referred to as required. 

16.5.1 The Loop-Shaping Design Procedure 

For effective control system design using analytical robust control optimization 
methods, such as McFarlane and Glover's Hoo Loop-Shaping Design Procedure 
(LSDP) [14], suitable weighting functions are required. The Hoc-norm of a 
transfer function matrix F(s) is the peak over all frequncies of the maximum 
singular value, it(F(jw)), at each frency, w, i.e. 

(16.8) 1IFIloo ~ sup it (F(jw)) . 
w 

In controller design, this norm can be used as a measure of the robustness 
of the stability of the control system (see, for example, [21]). The selection 
of good weighting functions to achieve both a small Hoo-norm and explicit 
closed loop performance can involve considerable effort from the designer. To 
help this process, multiobjective optimization techniques can be used to search 
for weighting functions which give a design that satisfies a set of closed loop 
performance and stability robustness goals [27]. 

For the LSDP, the plant model G = if-I IV, is a normalized left coprime 
factorization (NLCF) of G. A perturbed model Gp is defined as Gp = (if + 
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Figure 16.6 Robust stabilization with respect to coprime factor uncertainty 

~M)-I(N + ~N) where ~M,~N E RHoo. A controller Ko which maximizes 
this class of perturbed models such that the system remains stable can be 
synthesized from the solution of 2 algebraic Ricatti equations. The optimal 
controller obtains 

(16.9) 

To meet closed-loop performance requirements, the nominal plant G is aug
mented with pre- and post-compensators WI and W2 respectively, so that the 
augmented plant Gs is Gs = W2GWI. An optimum feedback controller Ko 
is synthesized which robustly stabilizes the NLCF of G s' The final feedback 
controller K is then constructed by simply combining Ko with the weights to 
gi ve K = WI K a W2 . The minimized norm 10 is a design indicator of the suc
cess of the loop-shaping as well as a measure of the robustness of the stability 
property. 

If closed-loop performance objective functions, Ii, and goals, 9i, are defined, 
then the weighting functions may be parameterized by p and the problem 
formulated as a multiobjective optimization problem. 

Problem: The problem is to find WI, W2 and hence K such that 

lO(WI , W2 ) ~ 91, 

(16.10) and Ii (WI, W2 ) ~ 9i for i = 2 ... n. 

16.5.2 EMS Design Model 

The control design problem is for a 140 mls maglev vehicle consisting of a 
chassis supporting a passenger cabin by means of a secondary suspension of 
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airsprings and hydraulic shock absorbers. The chassis is levitated by means 
of dc electromagnets under active control providing an attractive force to the 
guideway. The aim of the control is to provide stability to an inherently un
stable system, to maintain the airgap, and to ensure the quality of the ride for 
the passengers. 

The design model [13, 20] is for a single electro-magnet considering the ver
tical movement of the chassis and passenger cabin. The secondary suspension 
is modeled as a linear spring damper system, and the primary electro-magnetic 
suspension is described by a nonlinear first order differential equation for the 
vertical force being derived from the magnet force law and the current/voltage 
relation. The model configuration is shown in Fig. 16.7. 

passenger 
cabin 

c 

chassis 

z 1l'F 

Figure 16.7 Maglev vehicle model 

The force, F, exerted by the magnet is 

(16.11) F( . ) _ Km [i(t)] 2 
z, z, t - ()' 2 z t 

where, from steady state considerations, Km = 2mg(zo/io)2; and where i is 
the current (nominal value io), z is the gap between magnet and guideway 
(nominal value zo), m is the total mass of the vehicle and 9 is the gravitational 
constant. If R is the total resistance of the circuit (including the amplifier 
output resistance and the magnet winding resistance), then for an instantaneous 
voltage v(t) across the magnet winding, the excitation current i(t) is controlled 
by 

(16.12) . d [i(t)] v(t) = Rz(t) + Km dt z(t) . 

16-14 EVOLUTIONARY ALGORITHMS AND SIMULATED ANNEALING 

airsprings and hydraulic shock absorbers. The chassis is levitated by means 
of dc electromagnets under active control providing an attractive force to the 
guideway. The aim of the control is to provide stability to an inherently un
stable system, to maintain the airgap, and to ensure the quality of the ride for 
the passengers. 

The design model [13, 20] is for a single electro-magnet considering the ver
tical movement of the chassis and passenger cabin. The secondary suspension 
is modeled as a linear spring damper system, and the primary electro-magnetic 
suspension is described by a nonlinear first order differential equation for the 
vertical force being derived from the magnet force law and the current/voltage 
relation. The model configuration is shown in Fig. 16.7. 

passenger 
cabin 

c 

chassis 

z 1l'F 

Figure 16.7 Maglev vehicle model 

The force, F, exerted by the magnet is 

(16.11) F( . ) _ Km [i(t)] 2 
z, z, t - ()' 2 z t 

where, from steady state considerations, Km = 2mg(zo/io)2; and where i is 
the current (nominal value io), z is the gap between magnet and guideway 
(nominal value zo), m is the total mass of the vehicle and 9 is the gravitational 
constant. If R is the total resistance of the circuit (including the amplifier 
output resistance and the magnet winding resistance), then for an instantaneous 
voltage v(t) across the magnet winding, the excitation current i(t) is controlled 
by 

(16.12) . d [i(t)] v(t) = Rz(t) + Km dt z(t) . 



EVOLUTIONARY ALGORITHMS AND SIMULATED ANNEALING 16-15 

The chassis has mass ml and the passenger cabin has mass m2. The sec
ondary suspension has a spring constant k and damping constant c. The rela
tionship between the two is assumed linear and satisfies Newton's law: 

(16.13) 

(16.14) 

mlXl + C(Xl - X2) + k(Xl - X2) = mg - F, 

m2x2 + C(X2 - xt} + k(X2 - xt} = 0, 

where Xl is the absolute position of the chassis, and X2 is the absolute position 
of the passenger cabin. 

The air gap is related to the absolute chassis position by 

(16.15) 

where hg(t) is the disturbance resulting from variations in the guideway profile. 
The measurement of the air gap, z, is always used for feedback, and the 

following measurements are also available: the secondary gap, Xl - X2, the 
chassis acceleration, Xl, the passenger cabin acceleration, X2, and the magnet 
current, i. 

16.5.3 Performance for Control System Design 

The performance measures used must reflect the objective of the control, namely 
the maximum airgap and the quality of the ride. In addition, there is a con
straint on the amount of control voltage that can be applied. Hence, perfor
mance indices based on the maximum variation in the airgap, z, the maximum 
variation in control voltage v and the maximum acceleration experienced by 
the passengers X2 are proposed. 

The major disturbance to the system is from variations in the guideway 
height, and the following bound on the guideway variations has been suggested 
for a 140 m/s vehicle [17] : 

(16.16) D = sup{lhg(t)1 : t ~ O} = 30 mm/s. 

Now, from [28, 26], for all possible hg(t) such that sup{lhg(t)1 : t ~ O} :::; D, 

(16.17) sup {jYi(t, hg)j : t ~ O} = D 100 

jYi(r, l)j dr, 

where Yi (r, 1) is the unit step response ofthe ith output ofthe linear closed-loop 
system. Thus, using (16.16) and (16.17), nominal performance functions for the 
linear closed-loop system can be defined on the airgap, passenger acceleration 
and control voltage. 
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To measure the performance of the closed-loop non-linear system, the re
sponses of the non-linear system outputs yHt, htest} to a test input, htest(i), 
can be calculated, and the maximum values evaluated. The test input, htest(i), 
(shown at the top of Fig. 16.8) was chosen to correspond to a severe guideway 
disturbance [Equation (16.16)] and represents a level guideway encountering a 
constant gradient of 30 mm/s immediately followed by a negative gradient of 
30 mm/s. 

A maximum power spectral density (p.s.d.) <I>max(w) of the passenger cabin 
acceleration has been recommended by the US Department of Transportation 
as a minimum ride quality standard [20]. A performance functional can be 
defined based on this recommendation. The p.s.d. of the track variations can 
be modeled as <I>hghg(W) = AV/W2, where A depends on the track quality and 
v is the speed. The p.s.d. of the passenger cabin is thus 

(16.18) 

where TX2hg represents the transfer function between hg and X2. 

16.6 DESIGN USING EVOLUTIONARY ALGORITHMS 

The maglev vehicle is inherently unstable and thus the primary goal of the 
controller is to provide stability. An electromagnet excited by a constant voltage 
will either clamp to the rail or fall as the attractive forces decrease with an 
increasing airgap. However, as well as ensuring the stability of the system, 
there are three other important considerations that are required when assessing 
the effectiveness of a control scheme. 

1. In order to avoid undesirable contact between the guideway and skids 
the allowed air gap should be maintained between 7 and 17 mm with a 
nominal value of 12 mm. Contact leads to vibration, noise, friction and 
possible damage to the vehicle and/or guideway and thus the control, or 
value of this output, is critical as the air gap has a definite bound. The 
nominal air gap should not be large as the lifting capacity decreases with 
a growing air gap and feasible power consumption and magnet weights 
would be un-realizable. The minimum air gap of 7 mm assures a sufficient 
safety margin to accommodate the failure of a single magnet [13] and 
therefore the maximum error between the actual air gap and nominal air 
gap is 5 mm. 

2. Vertical acceleration experienced by passengers may be used as a measure 
of ride comfort. Typically, this should not exceed 0.5 m/s2 in either 
direction [13]. However, this is not a rigid requirement and it may be 
allowed to increase to increase to as much as 1.0 m/s2. 
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3. Additionally, the control effort required should be within feasible limits of 
the electromagnets. Thus, the required control voltage should be within 
± 600V [13]. 

The objective functions for the design of the maglev EMS control system 
using the evolutionary algorithm are thus defined as 

!1 1O, 

12 D 100 

Iz(r, l)ldr, 

Is D 100 

IX2(r, l)ldr, 

(16.19) 14 D 100 

Iv(r, l)ldr, 

15 max{lz'(t, htest}I}, t 
16 max{lx~(t, htest}I}, t 
h max{lv'(t, htest}I}. t 

The first objective is the Hoc-norm, equation (16.9), and is employed as a 
measure of the overall success of the design in terms of its stability robustness. 
Objectives 12,3,4 are obtained from the step response of a linear model of the 
system and controller, defined by the free design parameters, and correspond to 
airgap, passenger acceleration and control voltage respectively. To measure the 
performance of the controlled non-linear system, the airgap, passenger accelera
tion and control voltage are determined for a severe disturbance in the guideway 
profile (shown at the top of Fig. 16.8). A satisfactory controller should ensure 
that the bounds are not exceeded when this disturbance is encountered and 
are measured by objectives 15,6,7 respectively. From [27, 24, 13], suitable goals 
for the objective functions are 91 = 5, 92,95 = 5mm, 93,96 = 500mm/s and 
94,97 = 600 V. 

Three possible candidate pre-plant weighting function configurations are 
considered, WP) = PI, wF) = Pl(S + P2)/(S + P3), or W~3) = pds2 + P2S + 
P3) / (s2 + P4S + P5). The post-plant weighting function W2 configuration options 
are 

w2 = diag (W2,1, W2,2, ... , W2,q) , 

where q measurements are used. The possible configurations for each diagonal 
element W2,;,i = 1, ... ,q, of W2 are either W?i) = Pn or W~~) = Pn(s + 
Pn+l)/(S + Pn+2). A measurement which is not 'used is defined 'as W~~), i = 
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2, ... ,5, however because the measurement on z is always used, the weighting 
function on the air gap, WJo; = 1, is a candidate. 

In the other words, the ~eighting function configuration set consists of vec
tors, X, with coordinates X j , such that: 

if j = 1 
(16.20) X'E{ {1,2,3} 

J {0,1,2} if j = 2,3, ... ,6. 

This configuration set is associated with the parameter set, II, consisting of the 
admissible design parameters, Pk, k = 1,2, ... ,20. The design vectors, P, are 
defined with the help of its subsets, i.e., P C II. 

The problem for H 00 design of the EMS control system is, therefore, con
verted to the determination of admissible pairs (X, P), satisfying the inequali
ties: 
(16.21) Ii "5.gi, (i=1,2, ... ,7). 

It can be also regarded as a multicriteria optimization problem for simultaneous 
minimization of the functionals, Ii, under the corresponding constraints. The 
application of standard optimization techniques to this problem, however, needs 
solution of 36 = 729 optimization subproblems in order to evaluate all possible 
configurations and define the feasible ones with respect to the performance 
criteria. 

The MOGA was implemented as described in section 16.3 with a population 
of 70 real-valued individuals. The intermediate recombination operator [16] was 
applied with probability 0.7 during reproduction and breeder GA mutation [16] 
was then employed with probability 0.1. The use of adaptive mutation rates 
may have been more appropriate for this example and representation, although 
the (seemingly) high mutation rate is consistent with the use of real-valued 
operators and the average number of active parameters. No fine-tuning of the 
operator rates was attempted. 

A typical solution found during the optimization by the MOGA was a con
figuration vector, 
(16.22) X = ( 3, 0, 1, 0, 0, 0 ), 

and design parameter vector, 

P 

(16.23) 

299.8786, 2.1687, 
36.7175, 0.7365, 

0.6537, 0.4082, 
0.6708, 0.3344, 
0.1696, 0.9729, 

corresponding to the performance vector, 

25.1303, 
0.1473, 
0.2274, 
0.4342, 
0.3389, 

173.6903, 
0.5089, 
0.3738, 
0.6547, 
0.6848 }, 

(16.24) F = (3.1773,4.9986,350.8752,194.4865,4.4619, 204.2840, 105.2997), 
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which clearly satisfies (16.21). 
Thus, only measurements of the air gap, Z, and the secondary airgap, Xl - X2, 

were required with the weighting functions 

(16.25) W (8) = 300 (8
2 + 2.178 + 25.1) 

1 (82 + 173.78 + 36.7) 

and W2 =diag(l, 0.654). The response of the maglev vehicle to the input signal 
htest(t) are shown in Fig 16.8 where it can be seen that all of the outputs remain 
within the critical bounds of the system specification and that satisfactory 
control has been achieved. 

However, for such responses it is difficult to determine the relative merits of 
one controller against another over the entire set of potential solutions. This 
is particularly true if on-line preference articulation is to be used to guide the 
search during an optimization. An alternative is the trade-off graph of the type 
shown in Fig. 16.9. 

Here, each line represents a non-dominated solution found by the MOGA 
illustrating typical trade-offs between controller designs for the maglev vehicle. 
The x-axis shows the design objectives, the y-axis the performance of con
trollers in each objective domain and the cross-marks in the figure show the 
design goals. Crossing lines between adjacent objectives indicates that there is 
a trade-off between those two objectives while parallel lines show that there is 
no conflict in the current population of solution estimates. The order of the 
objectives along the x-axis may, of course, be varied in order to assess trade-off 
between other design objectives. 

In Fig. 16.9, only the preferred individuals, those that satisfy the design 
goals, are shown. When no individuals satisfy all the design goals, the non
dominated or Pareto optimal solutions are displayed. Trade-offs between ad
jacent objectives result in the crossing of the lines between them whereas con
current lines indicate that the objectives do not compete with one another. 
For example, in Fig. 16.9, airgap and passenger cabin acceleration (objectives 
2 and 3) appear to compete quite heavily whilst passenger cabin acceleration 
and control voltage (objective 4) do not exhibit the same level of competition. 
Note, however, that all of the potential solutions shown satisfy all of the design 
criteria and are thus all equally valid. 

Examination of the controllers found by the MOGA reveals that none of 
the preferred candidate solutions have pre-plant weighting functions WP) or 
W?). However, Pareto-optimal solutions with these weighting functions were 
found that violated the robustness criteria (objective 1) whilst providing better 
responses to the test signal for the time-domain performance measures. 

Examination of the preferred controllers post-plant weighting functions re
veals that the simplest satisfactory control schemes may be realized using mea-
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Figure 16.9 Design objective trade-offs 

surements for the airgap, Z, and only one of either secondary airgap, Xl - X2, 

or passenger cabin acceleration, £2, weighted with a pure gain, Pn. A number 
of other satisfactory control strategies were also found although they required 
more measurements or greater complexity in the weighting functions. 

Having satisfied the original design goals, the control engineer is now free 
to enhance the performance of the controller. That is, the relative degree of 
under- or over-attainment of the design goals is clearly visible in Fig. 16.9 and 
the designer may take advantage of this information if the initial optimization 
requires the setting of new design goals. For example, the passenger cabin 
acceleration criteria (objectives 3 and 6) may be relaxed in order to try to 
improve the airgap error response, control voltage or stability measure. The 
final choice of the controller to be employed can thus be made from a number 
of different satisfactory solutions, possibly derived from different performance 
goals or even design methodologies. For example, the more complex controllers 
in this example appear to offer a greater level of robustness while the simpler 
ones would be less expensive to implement. 

16.7 SIMULATED ANNEALING 

Another probabilistic-based approach to solving multiobjective optimization 
problems is simulated annealing. Like evolutionary algorithms, simulated an
nealing approaches do not require (or deduce) any functional derivative infor
mation, and are thus unaffected by discontinuities and non-linearities. Simu
lated annealing is a search procedure which uses local hill climbing, but in a 
modified manner. The algorithm makes small steps to search the local topog
raphy. If the step results in an improved solution, the new solution is accepted; 
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otherwise it is accepted with a probability which is initially close to unity, 
but as the algorithm progresses is reduced in stages until it is close to zero. 
By accepting some solutions which are worse, the algorithm has the chance of 
climbing out of local minima and finding a global optimum. 

The algorithm presented in this chapter is based on a simulated annealing 
scheme developed by Vanderbilt and Louie [23], but has been extended to 
multiobjective optimization. The algorithm searches for an p E 0, such that 
the following inequalities 

(16.26) Ii (p) '5: gi V i = 1. .. n 

are satisfied. The algorithm could be easily modified to solve (16.1). 

16.7.1 The Metropolis algorithm 

The simulated annealing algorithm has its origins in the statistical mechanical 
annealing of solids. A simple algorithm was proposed by Metropolis et al. 
[15] which can be used to simulate the annealing process. The temperature 
is reduced in stages. At each temperature, the system is perturbed, and the 
change in energy calculated. The perturbed state is accepted as the new state if 
the energy has decreased. If the energy has increased, the new state is accepted 
with a probability, P(tl.E), given byexp(-tl.E/(kbT)) 

(16.27) 

where -tl.E is the change in energy, T is the temperature and kb is the Boltz
mann constant. This acceptance rule is referred to as the Metropolis criterion. 
The basic Metropolis algorithm is shown in Fig. 16.10. 

16.7.2 Multiobjective Optimization by Simulated Annealing 

The Metropolis algorithm can be used in a simulated annealing scheme to 
solve optimization problems. This may be done by replacing the energy with 
the objective function, using the temperature as a control parameter, and by 
assuming that the role of the states of a solid is taken by a description of 
a system configuration. Many practical simulated annealing techniques have 
been developed for combinatorial optimization problems, however, Vanderbilt 
and Louie [23] first proposed that the basic scheme be used for searching over 
a continuous variable space. The main difference with combinatorial methods 
is the perturbation mechanism for searching the parameter space. 

There are 5 main features of the Metropolis algorithm which must be con
sidered in developing a simulated annealing scheme: (i) the description of the 
system, (ii) the perturbation mechanism, (iii) the energy function, (iv) the 
acceptance criterion and (v) the cooling scheme. 
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Set T = initial temperature 
Set M = a number of steps 
Set kb = cooling rate constant 
Until terminating condition is true dO{ 

for i = 1 to M dO{ 
Make small perturbation on system 
Calculate change in energy I:1E 
If I:1E < 0 

accept perturbation 
else 

accept perturbation with probability 

16-23 

P(I:1E) = exp(-I:1Ej(kbT)) 
} 
Reduce Temperature 

} 

Figure 16.10 The basic Metropolis algorithm. 

The description of the system. The system configuration must be repre
sented in some way which describes the space of possible designs. For contin
uous parameter problems, this is generally just by a parameter vector p E IR? 
with a parameter set n C IRq, thus {p : pEn} describes the set of possible 
designs. 

The perturbation mechanism. A vector U E IRq of independent random 
numbers (Ul, u2, ... ,~) is generated where each Ui is chosen independently 
from the interval [-v3, V3J, so they have zero mean and unit variance. Thus 
the vector U = (Ul, U2, ..• , uq ) occurs with a constant probability density inside 
a hypercube of volume (2V3)q and zero outside. A step I:1p to a trial point :P 
is taken :P = p + I:1p where 
(16.28) I:1p = Qu, 

where the matrix Q E IRqxq controls the step distribution. Random steps with 
a desired covariance matrix s E IRqxq can be generated from (16.28) and by 
solving for Q, 
(16.29) s = QQT. 

A procedure for choosing s so that it adapts to the topography of the objec
tive function has been proposed by Vanderbilt and Louie [23]. The excursions 
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of the random walk are used as the measure of the local topology, so that the 
search adapts itself to the local topology. Firstly, from [23], the available phase 
space E(T) is vaguely defined as a function of the temperature T to be 

(16.30) E(T) = {p: E(p) - Emin(P);S T}, 

where EO is the energy function which is defined in the next section. If the 
axes of s are poorly aligned with the topology of E(T), much time will be 
wasted exploring fruitless directions of search. So, at the end of the lth set 
of M steps, the first and second moments of the walk segment are calculated, 
where 

M 

(16.31) A}l) = 11M L p}m;l) 
m=l 

and 
M 

(16.32) S~) = 11M L [p~m;l) - A~l)] [p;m;l) - A;l)] 
m=l 

where p(m;l) is the value of p on the mth step of the lth set. Thus S describes 
the actual shape of the walk over the lth set. To choose s for the next iteration 
set, 1+1, 

(16.33) 

where X. > 1 is a growth factor, and j3 is based on a geometric average over 
the random variables f}.p. Typically, X. = 3 and j3 = 0.11 [23]. 

The idea behind this scheme is that the steps are initially small, but grow as 
the annealing progresses until the walk can cover the phase space E(T). Steps 
outside the phase space will then begin to be rejected, and the size of the walk 
will reduce as the phase space E(T) gets smaller as the temperature is reduced. 
The size and shape of S and hence s will thus adapt to the topology of E(p). 
In this way, the whole possible phase space is covered in a relatively efficient 
manner. 

The energy function. The energy function E is used to convert the multi
objective problem to a single objective minimax problem by 

(16.34) { {
Ii (p) - gi } . } E(p) = max max Wi ,0: z = 1, ... , n , 

where Wi, i = 1, ... , n are positive weightings chosen a priori by the designer 
to reflect the relative importance of each objective function Ii. 
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The acceptance criterion. The algorithm uses the Metropolis acceptance 
criterion. Thus, if the energy change is tl.E = E(p) - E(p), where p is a trial 
point, p is the current point and E is as for (16.34), then if tl.E ::; 0, the trial 
point is accepted; otherwise, the trial point is accepted with a probability given 
byexp(-tl.Ej(kbT )). 

The cooling scheme. After every M steps of the algorithm at the temper
ature T, the new temperature T* is set to T* = XTT, where 0 < XT < 1. The 
choice of XT greatly affects the efficiency of the annealing and its ability to 
climb out of local minima; if XT is too small, the temperature will reduce too 
quickly, and the process will get stuck in a local minimum. If XT is too large, 
the process will become very inefficient. 

In addition, the efficiency of the algorithm and its ability to climb out of 
local minima is dependent on the initial temperature. Vanderbilt and Louie 
[23] suggest that the initial temperature is chosen on the basis of the variance 
of the energy E(p) of a random sample of points p, and XT is chosen by trial 
and error. From the tests by Vanderbilt and Louie [23] and in [25], a slow 
anneal, with XT = 0.99, seems to result in a solution, but it is at the expense 
of a large number of iterations. 

16.7.3 The Multiobjective Simulated Annealing Algorithm 

The complete multiobjective simulated annealing algorithm is shown in Fig. 
16.11. The algorithm iterates until a solution which satisfies (16.26) is found. 
If a solution does not exist, the algorithm iterates until cool i.e. T(l) ::; T min. 

Note that if a solution is not found, there is no guarantee that a solution 
does not exist. In order that a solution to (16.1) is obtained, the termination 
criterion and the energy function can be changed. 

A test should be made to check that p E 0, and if not, trials are made 
until a trial p E 0 is obtained. An alternative is to characterize 0 by a set of 
inequality constraints, with a penalty function if p ct. O. 
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Define Ii, gi and Wi for i = 1, ... , n 
Set M, XT, Xs , (3, and kb 
Set initial and minimum temperatures, T(O) and Tmin 
Set initial point p(O) = (p~O), p~O), ... , p~O») 
Calculate objective function l(p(O») 
Calculate initial energy E(p(O») by (16.34) 
Set initial covariance matrix 8(0) 

Calculate Q(O) by solving (16.29) 
Set iteration number k=O 
Set cooling stage number I = 0 
Set cooling stage counter m = 0 
until li(P(k») :::; gNi = 1, ... , n or T(I) :::; Tmin do { 

Generate random vector U = (U1,U2, ... ,uq ) where 

} 

Generate trial point p = p(k) + Q(k)u 
Calculate I(p) and E(p) 

Ui = random[-V3, V3] 

Calculate energy change LlE = E(p) - E(p(k») 
if 

LlE :::; 0, accept move 
else 

if exp(-LlE/(kbT(I»)) > random[O, I), accept move 
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Calculate 8(1+1) from (16.33) and Q(I+1) by solving (16.29) 
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Set m = 0 and increment I = I + 1 
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16.8 DESIGN USING SIMULATED ANNEALING 

For the design of the maglev EMS control system using the simulated annealing 
algorithm, the objective functions are defined as 

h 10, 

h D 100 

Iz(r, l)ldr, 

Is D 100 

IX2(r, l)ldr, 

/4 D 100 

Iv(r, l)ldr, 

(16.35) /5 max{lz'(t, htesdl}, t 
/6 max{lx~(t, htest)I}, t 
h max{lv'(t, htest)l} , t 
/8 max{<PX2X2 (W) - <Pmax(W)}. 

w 

Here, objectives /1, ... ,7 are the same as those specified in (16.19). An additional 
objective, /8, described in section 16.5.3 defines the power spectral density and 
is used as a measure of ride quality standard. From [27, 24, 13], suitable 
goals for the objective functions are gl = 5, g2,g5 = 5mm, g3,g6 = 500mm/s, 
g4,g7 = 600 V and g8 = 0. 

Measurements of the air gap, z, and the passenger cabin acceleration, X2, 

are used for feedback. The weighting function configurations are 

(16.36) 

The secondary suspension stiffness and damping factors c and k are included 
as design parameters PI0 and Pll . 

The weighting vector for the energy function (16.34) is defined as w = 
(0.1,0.5,10,10,0.5,10,10,0.4); this reflects the relative importance of the ob
jective functions. The initial temperature was set to T = 5. 

The multiobjective simulated annealing algorithm was run with the LSDP 
and a design vector found which met all the design goals except the performance 
functional based on the power spectral density specification, which was only 
marginally exceeded. The performance objective functions of the design are 
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Figure 16.12 Nonlinear system responses to test input htest 
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Figure 16.13 Passenger cabin psd (-) and ride quality standard psd (- - -) 

h 2.64, 

h 5.06 mm, 

is 391.4 mm/s2, 

i4 201.9 V, 

(16.37) i5 4.38 mm, 

i6 291.1 mm/s2, 

h 33.6 V, 

is 0.075. 

The designed weighting functions are 

(16.38) 

(16.39) 

903.2 (82 + 169.68 + 485.4) 
(82 + 69.58 + 488.3) , 

. ( (8+256.2) ) 
dlag 426.9 (8 + 379.2),3.23 , 

and the designed secondary suspension stiffness and damping factors are c = 
90.3 and d = 20.0. The non-linear simulation response and power spectral 
density of the final design are shown in Figs. 16.12 and 16.13. 
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16.9 DISCUSSION AND CONCLUSIONS 

This chapter has presented two approaches to solving multiple criteria opti
mization problems, multiobjective genetic algorithms and simulated annealing, 
and demonstrated their application on a realistic industrial problem of robust 
control system design. Both approaches were shown to yield acceptable solu
tions to the design problem, satisfying a set of competing design criteria. 

The MOGA approach, utilizing evolutionary algorithms that are known to 
perform well on broad classes of of ill-behaved problems, offers a number of 
properties desirable in the solution of multiple criteria problems. The ability to 
simultaneously handle many candidate solutions is well suited to most multiple 
criteria problems as are the mechanisms to promote diversity in the population. 
Indeed, this diversity and corresponding richness in trade-off information may 
be used to refine the initial preferences or goals until a suitable compromise 
is obtained, possibly through the use of on-line preference articulation. A 
drawback of the MOGA approach may be the length of execution time due to 
the need to evaluate whole populations of candidate solutions. 

The simulated annealing algorithm, offering a simple parameterization of 
the search space, is shown to be an efficient approach when the choice of initial 
design parameters is difficult or where hill-climbing methods fail or are unable 
to locate solutions other than local ones. In such circumstances, the possibly 
larger number of iterations over the conventional approach may be justified by 
a better quality solution. A drawback of the simulated annealing algorithm 
presented here compared with the MOGA is the need to define weightings 
for the energy function, although these could be calculated by some method 
automatically. 
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Simulation 9-24,25, 12-15,27,30 
Single-objective LP 13-7 
softly constrained simulation 9-25, 33 

stable (in single-objective 
programming) 3-3 
(multi-objective optimization) 3-20 

Standard form 13-3 
state (of a dynamic model) 9-23 
state trajectory 9-24 
STEM (Step Method) 10-18 
Step direction vector 13-6 
Step size 13-7 
Step size factor 13-7 
strength of preference 14-33 
Strict preference relation 4-5 , 14 , 17 
Strict semi order 4-6 
Strict simple order 4-6 
Strict weak order 4-6 
strictly monotonically increasing 
function 2-17 
strictly positive cone 9-9 
strong outranking 11-7 
strongly Edgeworth-Pareto optimal 

point 2-14 
strongly efficient solution 2-14 
strongly maximal solution 2-14 
strongly monotonically increasing 
function 2-17 
strongly positive cone 9-9 
subdifferential of a set-valued map 3-

18 
substantive model, 9-7, 8, 22, 35 
suitability 6-4 
Swing Weights 12-18,19 
t-conorm 15-14 
threshold measurement 15-14 
thresholds 1-13, 34 
t-norm 15-14,16 

Total order 4-6 
Total preorder 4-6 
trade-off (coefficient) 9-6, 8, 10 
tradeoff cut 10-6 
tradeoffs 10-4 
Transitivity 12-1, 3 
transitivity 2-4 
triple C 15-31 
truth maintenance systems 15-22 
upper approximation 

(see rough approximation) 
upper limit 7-7 
upper locally Lipschitz 7-10 
upper semicontinuous 7-7 
upper semi-derivative 7-10 
Utility function 13-8 
utility theory 6-3 
utopia (ideal) point 9-12 
validity 6-5 

1-5 

Value Function 12-1,2,3,4,5,6, 13, 
14,15,17,18,29,32 

value functions 10-4 
Value Tree 12-6, 10, 11, 13, 15, 18, 

19,20,26 
valued outranking relation 11-8 
valued preference 15-14 
valued relation 11-2 
Value-Focused Thinking 12-10,11, 

22,31 
Vanderbilt and Louie 16-22 
vector optimal(ity) 9-3 
vector optimization problem 2-3 
veto threshold 11-19 
Visual Interactive Analysis 12-21,24, 

25,27,29,31 
visual interactive methods 10-22 
Weak order 4-6 
weak outranking 11-7 
weak perturbation map 7-3 
Weak preference relation 4-17 
weakly K-maximal solution 3-5 
weakly Edgeworth-Pareto optimal 

point 2-11 
weakly efficient (decision) outcome 

9-6,8 
weakly efficient solution 2-11 
weakly K-minimal point 7-2 
weakly K-minimal solution 3-5 
weakly maximal solution 2-11 
weight 1-5,35 
weighted Ip -norm 2-18 
weighted Chebyshev procedure 9-2 
weighted compromise solution 9-1, 20 



1-6 

weighted maximum norm 2-19 
Weighted objectives 13-8 
weighted sum approach 2-22 
weighting coefficient 9-19,22,13-13 
weights 11-17 
w-stable 3-26 
w-subdifferential of a set-valued map 

3-24 
w-subgradient of a set-valued map 

3-24 
Zionts-Wallenius method 10-8 
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weighted maximum norm 2-19 
Weighted objectives 13-8 
weighted sum approach 2-22 
weighting coefficient 9-19,22,13-13 
weights 11-17 
w-stable 3-26 
w-subdifferential of a set-valued map 

3-24 
w-subgradient of a set-valued map 

3-24 
Zionts-Wallenius method 10-8 


